勾股数,又名毕氏三元数,就是可以构成一个直角三角形三边的一组正整数。接下来看一下勾股数的规律有哪些。
勾股数的规律
(1)当a为大于1的奇数2n+1时,b=2n²+2n,c=2n²+2n+1。实际上就是把a的平方数拆成两个连续自然数,例如:
n=1时(a,b,c)=(3,4,5)
n=2时(a,b,c)=(5,12,13)
n=3时(a,b,c)=(7,24,25)
(2)当a为大于4的偶数2n时,b=n²-1,c=n²+1,也就是把a的一半的平方分别减1和加1,例如:
n=3时(a,b,c)=(6,8,10)
n=4时(a,b,c)=(8,15,17)
n=5时(a,b,c)=(10,24,26)
20以内的勾股数勾股数的3条规律:1、凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。2、在一组勾股数中,当最小边为奇数时,它的平方刚好等于另外两个连续的正整数之和。3、在一组勾股数中,当最小边为偶数时,它的平方刚好等于两个连续整数之和的二倍。
规律一:在勾股数(3,4,5)、(5,12,13)、(7,24,25)(9,40,41)中,我们发现:
由(3,4,5)有:3 2 =9=4+5;
由(5,12,13)有:5 2 =25=12+13;
由(7,24,25)有:7 2 =49=24+25;
由(9,40,41)有:9 2 =81=40+41。
即在一组勾股数中,当最小边为奇数时,它的平方刚好等于另外两个连续的正整数之和。因此,我们把它推广到一般,从而可得出以下公式:
∵(2n+1) 2 =4n 2 +4n+1=(2n 2 +2n)+(2n 2 +2n+1)
∴(2n+1) 2 +(2n 2 +2n) 2 =(2n 2 +2n+1) 2 (n为正整数)
勾股数公式一:(2n+1,2n 2 +2n,2n 2 +2n+1)(n为正整数)。
规律二:在勾股数(6,8,10)、(8,15,17)、(10,24,26)中,我们发现:
由(6,8,10)有:6 2 =36=2×(8+10);
由(8,15,17)有:8 2 =64=2×(15+17);
由(10,24,26)有:10 2 =100=2×(24+26);
即在一组勾股数中,当最小边为偶数时,它的平方刚好等于两个连续整数之和的二倍,推广到一般,从而可得出另一公式:
∵(2n) 2 =4n 2 =2[(n 2 -1)+(n 2 +1)]
∴(2n) 2 +(n 2 -1) 2 =(n 2 +1) 2 (n≥2且n为正整数)
勾股数公式二:(2n,n 2 -1,n 2 +1)(n≥2且n为正整数)。
问题一:勾股数有什么规律?? 在直角三角形中,若以a、b表示两条直角边,c表示斜边,勾股定理可以表述为a2+b2=c2。满足这个等式的正整数a、b、c叫做一组勾股数。
例如(3、4、5),(5、12、13),(6、8、10),(7、24、25)等一组一组的数,每一组都能满足a2+b2=c2,因此它们都是勾股数组(其中3、4、5是最简单的一组勾股数)。显然,若直角三角形的边长都为正整数,则这三个数便构成一组勾股数;反之,每一组勾股数都能确定一个边长是正整数的直角三角形。因此,掌握确定勾股数组的方法对研究直角三角形具有重要意义。
1.任取两个正整数m、n,使2mn是一个完全平方数,那么
c=2+9+6=17。
则8、15、17便是一组勾股数。
证明:
∴a、b、c构成一组勾股数
2.任取两个正整数m、n、(m>n),那么
a=m2-n2,b=2mn,c=m2+n2构成一组勾股数。
例如:当m=4,n=3时,
a=42-32=7,b=2×4×3=24,c=42+32=25
则7、24、25便是一组勾股数。
证明:
∵ a2+b2=(m2-n2)+(2mn)2
=m4-2m2n2+n4+4m2n2
=m4+2m2n2+4n2
=(m2+n2)2
=c2
∴a、b、c构成一组勾股数。
3.若勾股数组中的某一个数已经确定,可用如下的方法确定另外两个数。
首先观察已知数是奇数还是偶数。
(1)若是大于1的奇数,把它平方后拆成相邻的两个整数,那么奇数与这两个整数构成一组勾股数。
例如9是勾股数中的一个数,
那么9、40、41便是一组勾股数。
证明:设大于1的奇数为2n+1,那么把它平方后拆成相邻的两个整数为
(2)若是大于2的偶数,把它除以2后再平方,然后把这个平方数分别减1,加1所得到的两个整数和这个偶数构成一组勾股数。
例如8是勾股数组中的一个数。
那么8、15,17便是一组勾股数。
证明:设大于2的偶数2n,那么把这个偶数除以2后再平方,然后把这个平方数分别减1,加1所得的两个整数为n2-1和n2+1
∵(2n)2+(n2-1)2=4n2+n4-2n2+1
=n4+2n2+1
=(n2+1)2
∴2n、n2-1、n2+1构成一组勾股数。
问题二:勾股数有什么规律? 在直角三角形中,若以a、b表示两条直角边,c表示斜边,勾股定理可以表述为a2+b2=c2。 满足这个等式的正整数a、b、c叫做一组勾股数。 例如(3、4、5),(5、12、13),(6、8、10),(7、24、25)等一组一组的数,每一组都能满足a2+b2=c2,因此它们都是勾股数组(其中3、4、5是最简单的一组勾股数)。显然,若直角三角形的边长都为正整数,则这三个数便构成一组勾股数;反之,每一组勾股数都能确定一个边长是正整数的直角三角形。因此,掌握确定勾股数组的方法对研究直角三角形具有重要意义。 1.任取两个正整数m、n,使2mn是一个完全平方数,那么 c=2+9+6=17。 则8、15、17便是一组勾股数。 证明: ∴a、b、c构成一组勾股数 2.任取两个正整数m、n、(m>n),那么 a=m2-n2,b=2mn,c=m2+n2构成一组勾股数。 例如:当m=4,n=3时, a=42-32=7,b=2×4×3=24,c=42+32=25 则7、24、25便是一组勾股数。 证明: ∵ a2+b2=(m2-n2)+(2mn)2 =m4-2m2n2+n4+4m2n2 =m4+2m2n2+4n2 =(m2+n2)2 =c2 ∴a、b、c构成一组勾股数。 3.若勾股数组中的某一个数已经确定,可用如下的方法确定另外两个数。 首先观察已知数是奇数还是偶数。 (1)若是大于1的奇数,把它平方后拆成相邻的两个整数,那么奇数与这两个整数构成一组勾股数。 例如9是勾股数中的一个数, 那么9、40、41便是一组勾股数。 证明:设大于1的奇数为2n+1,那么把它平方后拆成相邻的两个整数为 (2)若是大于2的偶数,把它除以2后再平方,然后把这个平方数分别减1,加1所得到的两个整数和这个偶数构成一组勾股数。 例如8是勾股数组中的一个数。 那么8、15,17便是一组勾股数。 证明:设大于2的偶数2n,那么把这个偶数除以2后再平方,然后把这个平方数分别减1,加1所得的两个整数为n2-1和n2+1 ∵(2n)2+(n2-1)2=4n2+n4-2n2+1 =n4+2n2+1 =(n2+1)2 ∴2n、n2-1、n2+1构成一组勾股数。
问题三:勾股数都具有哪些规律 两个小数的平方和是大数的平方
我们老师是这样讲的 应该对的
问题四:勾股数有哪些 常见的勾股数及几种通式有:
(1) (3, 4, 5), (6, 8,10) … …
3n,4n,5n (n是正整数)
(2) (5,12,13) ,( 7,24,25), ( 9,40,41) … …
2n + 1, 2n^2 + 2n, 2n^2 + 2n + 1 (n是正整数)
(3) (8,15,17), (12,35,37) … …
2^2*(n+1),[2(n+1)]^2-1,[2(n+1)]^2+1 (n是正整数)
(4)m^2-n^2,2mn,m^2+n^2 (m、n均是正整数,m>n)
简单列出一些:
3 4 5
5 12 13
7 24 25
9 40 41
11 60 61
13 84 85
15 112 113
8,15,17
12,35,37
20,21,29
20,99,101
48,55,73
60,91,109
问题五:勾股数有哪些 设三个数分别为i,j,k
i=3 j=4 k=5;
i=5 j=12 k=13;
i=6 j=8 k=10;
i=7 j=24 k=25;
i=8 j=15 k=17;
i=9 j=12 k=15;
i=9 j=40 k=41;
i=10 j=24 k=26;
i=11 j=60 k=61;
i=12 j=16 k=20;
i=12 j=35 k=37;
i=13 j=84 k=85;
i=14 j=48 k=50;
i=15 j=20 k=25;
i=15 j=36 k=39;
i=16 j=30 k=34;
i=16 j=63 k=65;
i=18 j=24 k=30;
i=18 j=80 k=82;
i=20 j=21 k=29;
i=20 j=48 k=52;
i=21 j=28 k=35;
i=21 j=72 k=75;
i=24 j=32 k=40;
i=24 j=45 k=51;
i=24 j=70 k=74;
i=25 j=60 k=65;
i=27 j=36 k=45;
i=28 j=45 k=53;
i=30 j=40 k=50;
i=30 j=72 k=78;
i=32 j=60 k=68;
i=33 j=44 k=55;
i=33 j=56 k=65;
i=35 j=84 k=91;
i=36 j=48 k=60;
i=36 j=77 k=85;
i=39 j=52 k=65;
i=39 j=80 k=89;
i=40 j=42 k=58;
i=40 j=75 k=85;
i=42 j=56 k=70;
i=45 j=60 k=75;
i=48 j=55 k=73;
i=48 j=64 k=80;
i=51 j=68 k=85;
i=54 j=72 k=90;
i=57 j=76 k=95;
i=60 j=63 k=87;
i=65 j=72 k=97这是100以内的