5的算术平方根为 :根号5
算术平方根概念:
若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
规定:0的算术平方根是0。
表示:a的算术平方根记为,读作“根号a”。
注:只有非负数有算术平方根,而且只有一个算术平方根。
拓展资料:
平方根和算术平方根的区别与联系:
区别:
(1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
(2)个数不同:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
(3)表示方法不同:正数a的平方根表示为±,正数a的算术平方根表示为。
(4)取值范围不同:正数的算术平方根一定是正数;正数的平方根一正一负,两数互为相反数。
联系:
(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种,是正的平方根。
(2)存在条件相同:只有非负数才有平方根和算术平方根。
(3)0的平方根,算术平方根均为0。开平方:求一个数的平方根的运算,叫做开平方。
注:
(1)平方和开平方的关系是互为逆运算;
(2)乘方是求根的途径,开平方是一种运算,是求平方根的过程;
(3)开方的方式是根号形式。
是2.236067977,约等于2.236。算术平方根实际是平方根的绝对值,平方根是满足所有例如x的平方=a的x,而算术平方根只取正值。算术平方根是指一个正数的正的平方根,负数没有算术平方根。
扩展资料
一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。例如:-1的平方根为±i,-9的平方根为±3i,其中i为虚数单位。
五的算术平方根是√5,因为5开平方根是个无限不循环小数(即无理数),所以只能写成√5。一般地说,若一个非负数x的平方等于a,则x叫做a的算术平方根。算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。0的算术平方根和平方根相同,都是0。