如果w[i,j]满足四边形不等式和区间包含单调性,那么m[i,j]也满足四边形不等式。 用s[i,j]表示m[i,j]的决策,如果函数m[i,j]满足四边形不等式,则函数s[i,j]满足单调性,即决策单调性: s[i,j]lt=s[i,j+]lt=s[i+1,j+1]。
则函数s[i,j]的值应该在一个区间内,即: s[i,j-1] lt= s[i,j] lt= s[i+1,j] 由于s[i,j-1]和s[i+1,j]已经在阶段j-i求出,所以在枚举决策变量k时,就可以从s[i,j-1]到s[i+1,j]。于是,我们利用s[i,j]的单调性,得到优化的状态转移方程为:m[I,j]=min{m[I,k]+m[k+1,j]}+w[I,j] 利用这样的决策单调性,就可以把时间复杂性优化到O(n^2)。边界:s[i,i] = i s[i,j]的值在m[i,j]取得最优值时,保存、更新。 上述方法是具有普遍性的。对于状态转移方程与上述类似,且w[i,j]满足四边形不等式的动态规划问题,都可以采用相同的优化方法,如最优二叉排序树(NOI`96)等。费了不少功夫,给个满意答案吧。
考研七个基本不等式是如下:
一、基本不等式
√(ab)≤(a+b)/2,那么可以变为 a^2-2ab+b^2 ≥ 0,a^2+b^2 ≥ 2ab,ab≤a与b的平均数的平方。
二、绝对值不等式公式
| |a|-|b| |≤|a-b|≤|a|+|b|。
| |a|-|b| |≤|a+b|≤|a|+|b|。
三、柯西不等式
设a1,a2,an,b1,b2,bn均是实数,则有(a1b1+a2b2++anbn)^2≤(a1^2+a2^2+an^2)*(b1^2+b2^2+bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,n)时取等号。
四、三角不等式
对于任意两个向量b其加强的不等式,这个不等式也可称为向量的三角不等式。
五、四边形不等式
如果对于任意的a1≤a2<b1≤b2,有m[a1,b1]+m[a2,b2]≤m[a1,b2]+m[a2,b1],那么m[i,j]满足四边形不等式。
课程:
(1)基本算法: 二分,分治,贪心
(2) 离散数学离散数学动态规划
(3) 搜索算法:深度优先 搜索,广度优先搜 A*算法 ,阿尔法贝塔剪枝
(4)数据结构: 线段树, 树状数组,并查集,Trie图
(5)图论问题:最小生成树 最短路 强连通分量、桥和割点
(6)网络流算法:基本的网络流算法,Dinic算法,带上下界的网络流,最小费用流
(7)计算几何:线与线求交,线与面求交,求凸包,半平面求交等
(8) 离散数学,高等数学,线性代数,初等数论,计算几何
(9)计算机专业英语
(10)C++;基础的递归、枚举算法
扩展资料:1.参赛队伍最多由三名参赛队员组成。
2.竞赛中命题10题左右,试题描述为英文,比赛时间为5个小时,前四个小时可以实时看到排名,最后一小时封榜,无法看到排名。
3.竞赛可以使用的语言:Java, C, C++, Kotlin 和 Python。
4.重点考察选手的算法和程序设计能力,不考察实际工程中常用的系统编程,多线程编程等等;
5.选手可携带任何非电子类资料,包括书籍和打印出来的程序等,部分赛区会对选手携带的纸质资料做限制。
6.评委负责将结果(正确或出错的类型)通过网络尽快返回给选手,除此之外不提供任何额外帮助;
7.每个题目对应一种颜色的气球,通过该题目的队伍会得到对应颜色气球。每道题目第一支解决掉它的队还会额外获得一个“FIRST PROBLEM SOLVED”的气球。
参考资料:北京大学暑期课:ACM/ICPC竞赛训练
百度百科-ACM国际大学生程序设计竞赛