均方差公式


均方差的公式为:S=((x1-x的平均值)^2+(x2-x的平均值)^2+(x3-x的平均值)^2+……+(xn-x的平均值)^2)/n)的算术平方根,其中xn表示第n个元素。均方差又叫做标准差,指的是离均差平方的算术平均数的算术平方根。

均方差的定义

均方差又叫做标准差或标准偏差,是离均差平方的算术平均数的算术平方根。均方差在概率统计中最常使用作为统计分布程度上的测量依据。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。

均方差反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:1、为非负数值,与测量资料具有相同单位。2、一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。

方差是衡量源数据和期望值相差的度量值。

方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。

扩展资料:

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离

平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。方差相应的计算公式为:

标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。

参考资料:百度百科-方差


转载请注明原文地址:https://juke.outofmemory.cn/read/2918232.html

最新回复(0)