标准误差的计算公式是什么?

toga2023-02-06  17

公式:设n个测量值的误差为  ,则这组测量值的标准误差  等于:

其中E为误差=测定值—真实值。

标准误差一般用SE表示,反映样本平均数对总体平均数的变异程度,从而反映抽样误差的大小,是量度结果精密度的指标。

标准差与标准误差的意义、作用和使用范围均不同。标准差(亦称单数标准差)一般用SD表示,是表示个体间变异大小的指标,反映了整个样本对样本平均数的离散程度,是数据精密度的衡量指标。

扩展资料:

标准误差的注意点:

需要注意的是,标准误差不是测量值的实际误差,也不是误差范围,它只是对一组测量数据可靠性的估计。标准误差小,测量的可靠性大一些,反之,测量就不大可靠。

进一步的分析表明,根据偶然误差的高斯理论,当一组测量值的标准误差为σ时,则其中的任何一个测量值的误差Ei有68.3%的可能性是在(-σ,+σ)区间内。

世界上多数国家的物理实验和正式的科学实验报告都是用标准误差评价数据的,现在稍好一些的计算器都有计算标准误差的功能,因此,了解标准误差是必要的。

标准误差随着样本数(或测量次数)n的增大,标准差趋向某个稳定值,即样本标准差s越接近总体标准差σ,而标准误差则随着样本数(或测量次数)n的增大逐渐减小,即样本平均数越接近总体平均数μ;故在实验中也经常采用适当增加样本数(或测量次数)使n增大的方法来减小实验误差,但样本数太大意义也不大。

标准差是最常用的统计量,一般用于表示一组样本变量的分散程度;标准误差一般用于统计推断中,主要包括假设检验和参数估计,如样本平均数的假设检验、参数的区间估计与点估计等。

标准差能反映一个数据集的离散程度,标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。平均数相同的两个数据集,标准差未必相同。

例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差应该是17.078分,B组的标准差应该是2.160分,说明A组学生之间的差距要比B组学生之间的差距大得多。

参考资料:百度百科——标准误差

标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差.

标准偏差反映的是个体观察值的变异,标准误反映的是样本均数之间的变异(即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度),标准误不是标准差.

标准误用来衡量抽样误差.标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大.因此,标准误是统计推断可靠性的指标.

在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量.对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差.

标准差是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,标准差能反映一个数据集的离散程度.

标准差与标准误都是心理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的.

首先要从统计抽样的方面说起.现实生活或者调查研究中,我们常常无法对某类欲进行调查的目标群体的所有成员都加以施测,而只能够在所有成员(即样本)中抽取一些成员出来进行调查,然后利用统计原理和方法对所得数据进行分析,分析出来的数据结果就是样本的结果,然后用样本结果推断总体的情况.一个总体可以抽取出多个样本,所抽取的样本越多,其样本均值就越接近总体数据的平均值.

标准差(standard deviation, STD)

表示的就是样本数据的离散程度.标准差就是样本平均数方差的开平方,标准差通常是相对于样本数据的平均值而定的,通常用M±SD来表示,表示样本某个数据观察值相距平均值有多远.从这里可以看到,标准差收到极值的影响.标准差越小,表明数据越聚集;标准差越大,表明数据越离散.标准差的大小因测验而定,如果一个测验是学术测验,标准差大,表示学生分数的离散程度大,更能够测量出学生的学业水平;如果一个侧样测量的是某种心理品质,标准差小,表明所编写的题目是同质的,这时候的标准差小的更好.标准差与正态分布有密切联系:在正态分布中,1个标准差等于正态分布下曲线的68.26%的面积,1.96个标准差等于95%的面积.这在测验分数等值上有重要作用.

标准误(standard error, SE)

表示的是抽样的误差.因为从一个总体中可以抽取出无多个样本,每一个样本的数据都是对总体的数据的估计.标准误代表的就是当前的样本对总体数据的估计,标准误代表的就是样本均数与总体均数的相对误差.标准误是由样本的标准差除以样本人数的开平方来计算的.从这里可以看到,标准误更大的是受到样本人数的影响.样本人数越大,标准误越小,那么抽样误差就越小,就表明所抽取的样本能够较好地代表样本.

标准误=标准差 / N的根号。标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方根误差。

标准误,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。标准误不是标准差,是多个样本平均数的标准差。标准误用来衡量抽样误差。

标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。

扩展资料:

需要注意的是,标准误差不是测量值的实际误差,也不是误差范围,它只是对一组测量数据可靠性的估计。标准误差小,测量的可靠性大一些,反之,测量就不大可靠。进一步的分析表明,根据偶然误差的高斯理论,当一组测量值的标准误差为σ时,则其中的任何一个测量值的误差εi有68.3%的可能性是在(-σ,+σ)区间内。

信度系数与信度指数:

除了测量标准误,通常在理测量中会使用信度系数和信度指数作为指标。

1、信度系数:即信度,一种相关性系数。常为同一受测者样本所得的两组资料的相关。

2、信度指数:也可作为信度系数。信度指数的平方就是信度系数。

参考资料:百度百科-se


转载请注明原文地址:https://juke.outofmemory.cn/read/2908375.html

最新回复(0)