数量积的定义

执金吾2023-02-06  35

数量积定义:数量积(dot productscalar product,也称为点积、点乘)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定为:a·b=a1b1+a2b2+……+anbn。使用矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为:a·b=a*b^T,这里的b^T指示矩阵b的转置。基本信息

中文名:点乘

外文名:dot productscalar product

别称:点积、数量积

运算类型:二元运算

点积的三个值:u、v、u,v夹角的余弦

点积的值:u,v的点积=|u||v|cosu的大小、v的大小、u,v夹角的余弦。在u,v非零的前提下,点积如果为负,则u,v形成的角大于90度如果为零,那么u,v垂直如果为正,那么u,v形成的角为锐角。

两个单位向量的点积得到两个向量的夹角的cos值,通过它可以知道两个向量的相似性,利用点积可判断一个多边形是否面向摄像机还是背向摄像机。

向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物理离光照的轴线越近,光照越强。

数量积:shù liàng jī 又称“内积”、“点积”,物理学上称为“标量积”.

两向量的数量积等于其中一个向量的模与另一个向量在这个向量的方向上的投影的乘积.两向量α与β的数量积:α·β=|α|*|β|cosθ;其中|α|、|β|是两向量的模,θ是两向量之间的夹角(0≤θ≤π).

若有坐标α(x1,y1,z1) ;β(x2,y2,z2),那么 α·β=x1x2+y1y2+z1z2; |α|=sqrt(x1^2+y1^2+z1^2);|β|=sqrt(x2^2+y2^2+z2^2).因此,用数量积可以求出两向量的夹角的余弦cosθ=α·β/|α|*|β|.已知两个向量A和B,它们的夹角为C,则A的模乘以B的模再乘以C的余弦称为A与B的数量积(又称内积) 即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b("·“不可省略,若用“×”则成了向量积)

数量积的运算公式是:a*b=|a||b|cosθ,若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。数量积是指接受在实数R上的两个向量并返回一个实数值标量的二元运算。

设a、b为非零向量,则:

1、设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a||e|cosθ。

2、a⊥b等价于a·b=0。

3、当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|;a·a=|a|2=a2或|a|=√a·a。

4、|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立。

5、cosθ=a·b/|a||b|(θ为向量a·b的夹角)。

6、零向量与任意向量的数量积为0。


转载请注明原文地址:https://juke.outofmemory.cn/read/2904893.html

最新回复(0)