多边形边数公式:n边形的边=(内角和÷180°)+2。
此定理适用所有的平面多边形,包括凸多边形和平面凹多边形。
多边形角度公式:
1、n边形外角和等于n·180°-(n-2)·180°=360°。
2、多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°。
3、内角:正n边形的内角和度数为:(n-2)×180°;正n边形的一个内角是(n-2)×180°÷n。
内角,数学术语,多边形相邻的两边组成的角叫做多边形的内角。
在数学中,三角形内角和为180°,四边形(多边形)内角和为360°。以此类推,加一条边,内角和就加180°。
内角和公式为:(n - 2)×180° 正多边形各内角度数为: (n - 2)×180°÷n
例如三角形内角和就是一个△内部的三个角的和,一个内角就是其中任意一个角。
正多边形的内角的和公式:(n-2)×180°(n大于等于3且n为整数)。
相关信息:
1、正多边形各内角度数为:(n - 2)×180°÷n。多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。
2、任意正多边形的外角和=360°,正多边形任意两条相邻边连线所构成的三角形是等腰三角形。
3、多边形边数公式:n边形的边=(内角和÷180°)+2。
4、多边形角度公式:n边形外角和等于n·180°-(n-2)·180°=360°。多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°。
5、内角:正n边形的内角和度数为:(n-2)×180°正n边形的一个内角是(n-2)×180°÷n。