特征:
1.圆有无数条半径和无数条直径,且同圆内圆的半径长度永远相同。
2.圆是轴对称、中心对称图形。
3.对称轴是直径所在的直线。
扩展资料:
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圆心,r 是半径。
圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。
圆的周长公式
圆的周长:
圆周长的一半 c=πr
半圆的周长 c=πr+2r
参考资料百度百科:园
圆的特征:1.圆心到圆上各点的距离都相等.
2.圆的面积=πr^2,圆的周长=2πr
3.圆是轴对称图形,有无数条对称轴,切对称轴都是经过圆心的直线
4.圆也是中心对称图形,它的对称中心在圆心
圆的特征有四点:1、有无数条半径和无数条直径,且同圆内圆的半径长度永远相同。2、圆是轴对称、中心对称图形。3、对称轴是直径所在的直线。4、圆是一条光滑且封闭的曲线,圆上每一点到圆心的距离都是相等,到圆心的距离为R的点都在圆上。在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。圆形规定为360°,是古巴比伦人在观察地平线太阳升起的时候,大约每4分钟移动一个位置,一天24小时移动了360个位置,所以规定一个圆内角为360°。这个°,代表太阳。圆是一种几何图形。根据定义,通常用圆规来画圆。同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。同时,圆又是“正无限多边形”,而“无限”只是一个概念。圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。