琴生不等式是什么 这样解释你懂了吗

发条玩具2023-02-03  25

1、琴生不等式以丹麦技术大学数学家约翰?延森(Johan Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。

2、琴生不等式可以用测度论或概率论的语言给出。这两种方式都表明同一个很一般的结果。函数换作实值随机变量(就纯数学而言,两者没有分别)。在空间上,任何函数相对于概率测度的积分就成了期望值。至于这个证明,只要使用f(x)的泰勒展开式,利用其二阶余项就可以证明。

詹森不等式是以丹麦数学家约翰·詹森(Johan Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。

琴生(Jensen)不等式(也称为詹森不等式),使用时注意前提、等号成立条件。

不等式定义

一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。

其中,两边的解析式的公共定义域称为不等式的定义域。

整式不等式:

整式不等式两边都是整式(即未知数不在分母上)。

一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0。

同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。


转载请注明原文地址:https://juke.outofmemory.cn/read/2883329.html

最新回复(0)