ln为一个算符,意思是求自然对数,即以e为底的对数。
e是一个常数,等于2.71828183…
lnx可以理解为ln(x),即以e为底x的对数,也就是求e的多少次方等于x。
lnx=loge^x
扩展资料:当自然对数lnN中真数为连续自变量时,称为对数函数,记作y=lnx(x为自变量,y为因变量)。
常数e的含义是单位时间内,持续的翻倍增长所能达到的极限值。
自然对数的底e是由一个重要极限给出的。
e是一个无限不循环小数,其值约等于2.718281828459…,它是一个超越数。
参考资料:自然对数-百度百科
ln为一个算符,意思是求自然对数,即以e为底的对数。e是一个常数,=2.71828183…lnx可以理解为ln(x),即以e为底x的对数,也就是求e的多少次方等于x
lnx是高一的知识。lnx指logex【e在右下方,指自然常数2.718281828459...】
拓展资料:
lnx是对数函数
对数函数:
对数的定义:一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
“log”是拉丁文logarithm(对数)的缩写
lnx是对数函数。
lnx即自然对数以常数e为底数的对数。记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义。一般表示方法为lnx。数学中也常见以logx表示自然对数。
常数e的含义是单位时间内,持续的翻倍增长所能达到的极限值。
自然对数的底e是由一个重要极限给出的。
lnx的产生历史相关:
16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。
德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。
欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。