1、等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3、等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4、等腰三角形底边上的垂直平分线到两条腰的距离相等。
扩展资料
判定的方式
定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
除了以上两种基本方法以外,还有如下判定的方式:
在一个三角形中,如果一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。
在一个三角形中,如果一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。
有两条角平分线(或中线,或高)相等的三角形是等腰三角形。
等腰三角形的性质有:等腰三角形的两个底角度数相等;等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合;等腰三角形底边上任意一点到两腰距离之和等于一腰上的高;等腰三角形底边上的垂直平分线到两条腰的距离相等。扩展资料 等腰三角形的性质有:等腰三角形的两个底角度数相等;等腰三角形的.顶角平分线,底边上的中线,底边上的高相互重合;等腰三角形底边上任意一点到两腰距离之和等于一腰上的高;等腰三角形底边上的垂直平分线到两条腰的距离相等。等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合。
3.等腰三角形的两底角的平分线相等。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
等腰三角形的判定:
1.两边相等的三角形为等腰三角形。
2.两底角相等的三角形为等腰三角形。
3.中线和高合一的三角形为等腰三角形。
4.角平分线和高合一的三角形为等腰三角形。
5.一个三角形,底边上的中垂线是同一条线,可以判定是此三角形是等腰三角形。
等腰三角形的公式
(1)已知三角形底a,高h,则S=ah/2。
(2)已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2),
S=sqrt
=sqrt
=1/4sqrt
(3)已知三角形两边a,b,这两边夹角C,则S=1/2absinC,即两夹边之积乘夹角的正弦值。
(4)设三角形三边分别为a、b、c,内切圆半径为r,则三角形面积=(a+b+c)r/2。
(5)设三角形三边分别为a、b、c,外接圆半径为R,则三角形面积=abc/4R。