平行四边形的内角和是多少?

李连贵熏肉大饼2023-02-02  19

平行四边形的四个内角和是360°。

因为对角线可以把平行四边形分成2个三角形,三角形的内角和是180°,所以平行四边形的内角和是180°×2=360°。

平行四边形(Parallelogram),是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。

在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。

特殊的平行四边形

矩形

定义:有一个角是直角的平行四边形是矩形。

判定:

1、有一个角是直角的平行四边形是矩形;

2、对角线相等的平行四边形是矩形;

3、有三个角是直角的四边形是矩形;

4、对角线相等且互相平分的四边形是矩形。

性质:

1、矩形具有平行四边形的一切性质;

2、矩形的对角线相等;

3、矩形的四个角都是90度;

4、矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点。

平行四边形的四个内角和是360°。

因为对角线可以把平行四边形分成2个三角形,三角形的内角和是180°,所以平行四边形的内角和是180°×2=360°。

平行四边形具有2阶(至180°)的旋转对称性(如果是正方形则为4阶)。如果它也具有两行反射对称性,那么它必须是菱形或长方形(非矩形矩形)。如果它有四行反射对称,它是一个正方形。

平行四边形的周长为2(a + b),其中a和b为相邻边的长度。

与任何其他凸多边形不同,平行四边形不能刻在任何小于其面积的两倍的三角形。

在平行四边形的内侧或外部构造的四个正方形的中心是正方形的顶点。

如果与平行四边形平行的两条线与对角线并行构成,则在该对角线的相对侧上形成的平行四边形面积相等。

扩展资料:

平行四边形的面积公式:底×高(可运用割补法,推导方法);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=a*h。

平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sinα。

平行四边形周长:四边之和。可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2(a+b)。

参考资料来源:百度百科——平行四边形

平行四边形的四个内角和度数是360度。

平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。如下图所示:

由于AB平行于CD,所以∠A+∠C=180°,所以∠B+∠D=180°。

故:平行四边形的四个内角和=∠A+∠C+∠B+∠D=360°。

扩展资料:

平行四边形的性质:

(1)夹在两条平行线间的平行的高相等。

(2)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

(3)连接任意四边形各边的中点所得图形是平行四边形。

(4)平行四边形的面积等于底和高的积。

(5)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。


转载请注明原文地址:https://juke.outofmemory.cn/read/2875964.html

最新回复(0)