定义
正三棱锥
几何体,锥体的一种,由四个三角形组成,亦称为四面体。
底面是正三角形,顶点在底面的射影是底面三角形的中心的三棱锥
称作正三棱锥;而由四个全等的正三角形组成的四面体称为正四面体。
(正三棱锥不等同于正四面体,正四面体必须每个面都是正三角形)
相关计算h
为底高(法线长度),A为底面面积,V
为体积,有:
三棱锥棱锥的侧面展开图是由4个三角形组成的,展开图的面积,就是棱锥的侧面积,则
:(其中Si,i
=
1,2为第i个侧面的面积)
S全=S棱锥侧+S底
V=1/3A(底面积)*h
三棱锥体积公式证明
一个三棱柱中的三个等体积的三棱锥
:
如图,这是一个一般的三棱柱ABC-A'B'C',它的体积可以分为三个等体积的三棱锥,即三棱锥C-A'AB,三棱锥C-A'B'B,三棱锥A'-CB'C'.
因为三棱柱的侧面A'ABB'是平行四边形,所以△A'AB的面积=△A'BB'的面积,即其中三棱锥C-A'AB与三棱锥C-A'B'B的底面积相等,它们两个的顶点都是C,即C到它们底面的距离都相等,所以三棱锥C-A'AB与三棱锥C-A'B'B的体积相等。而三棱锥C-A'B'B也可以看作是三棱锥A'-BCB',且三棱锥A'-CB'C'与三棱锥A'-BCB'的底面积相等(即△BCB'与△B'C'C的面积相等),且它们两个的顶点都是A',即A'到它们底面的距离都相等,所以三棱锥A'-CB'C'与三棱锥A'-BCB'的体积也相等,故三棱锥C-A'AB,三棱锥C-A'B'B,三棱锥A'-CB'C'的体积都相等,由此可见,一个三棱柱的体积等于三个等体积的三棱锥体积之和,即V三棱锥=1/3S·h.
内切球心
内切球心在顶点与底面重心的连线的距底面1/4处
相关计算:因为正三棱锥底面为正三角形,所以高线位于任意顶点与底边中点连线,又三线合一,所以重心位于高线距顶点2/3处,即可算出顶点与重心的距离,又知正三棱锥边长,即可根据勾股定理算出圆心所在直线(即顶点与底面重心的连线)的长度,即可算出底面与球心的距离(即内切球半径)。
外接球心
外接球心在顶点与底面重心的连线的距顶点3/4处
相关计算:因为正三棱锥底面为正三角形,所以高线位于任意顶点与底边中点连线,又三线合一,所以重心位于高线距顶点2/3处,即可算出顶点与重心的距离,又知正三棱锥边长,即可根据勾股定理算出圆心所在直线(即顶点与底面重心的连线)的长度,即可算出顶点与球心的距离(即外接球半径)。
三棱锥的体积公式:V=(1/3)*S*H。(V:表示三棱锥的体积,S:表示的是三棱锥的底面积,H:表示三棱锥的高)。
三棱锥锥体的一种几何体,由四个三角形组成。固定底面时有一个顶点,不固定底面时有四个顶点。(正三棱锥不等同于正四面体,正四面体必须每个面都是正三角形)。
一般的三棱锥内切球心在四个面上的射影与四个面的重心重合,据此可确定球心位置。
三棱锥的来历:
在公元前1650年左右的莱因德数学纸草书中,棱锥已经作为数学对象被几何学家研究。纸草书的56至59题是有关正方锥的底边、高以及底面和侧面形成的二面角之间关系的计算,如已知高和底边长度,求二面角等。
传说由欧几里德在公元前三世纪写成的《几何原本》中,第十二章第七个命题证明了:三角柱的体积等于同底同高的三角锥的三倍,但《几何原本》中没有给出直接的棱锥体积公式。