用希腊字母δ,读作西格玛。用英文字母表示即为S^2。
标准差用英文字母小写的s。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。方差在统计描述和概率分布中各有不同的定义,并有不同的公式。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
方差是衡量源数据和期望值相差的度量值。
方差的表示方法如下:
其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
方差在统计学中的意义:
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
用希腊字母δ,读作西格玛。用英文字母表示即为S^2。标准差用英文字母小写的s。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。方差在统计描述和概率分布中各有不同的定义,并有不同的公式。
方差的性质:设C是常数,则D(C)=0。
1、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。随机变量random variable表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。
2、统计中的方差是每个样本值与全体样本值的平均数之差的平方值的平均数。平均数的计算方法是:一组数据中所有数据之和再除以这组数据的个数。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均速度、平均身高、平均产量、平均成绩等等。