你注意到了吗,商店橱窗里的罐头盒一般都是这样排列的。它们按照一定的规律排成了三角形。现在我们用圆点来表示这些罐头盒,排列如下,像上面的l、3、6、10、15这些能够表示成三角形的形状的总数量的数,叫做三角形数。想一想:能不能把9个圆点按上面的规律排成一个三角形?9是不是三角形数?再想一想:能不能把25个圆点按上面的规律排成一个三角形?25是不是三角形数?为了能方便地看出规律,我们把三角形数改排成如下图。观察这些三角形数,你发现它们有什么规律吗?原来三角形数是从l开始的连续自然数的和。l是第一个三角形数,3是第二个三角形数,6是第三个三角形数,10是第四个三角形数,15是第五个三角形数……那么,第七个三角形数就是:l+2+3+4+5+6+7=28;第九个三角形数就是:1+2+3+4+5+6+7+8+9=45;第十个三角形数就是:1+2+3+…+10=55;第1OO个三角形数就是:l+2+3+…+100=5050。练一练:(1)第5个和第6个三角形数相差(
);第7个三角形数比第6个三角形数多(
),比第8个三角形数少(
)。(2)l+2+3+…+25=(
),这是第(
)个三角形数。(3)l+2+3+…+27的和,是第(
)个三角形数。(4)已知第10个三角行数是55,第11个三角形数是(
);已知第15个三角形数是120,第14个三角形数是(
)。(5)第20个三角形数是多少?第50个三角形数是多少?
(本文作者盛大启为南京晓庄国际实验学校特级教师,苏教版小学数学教材主编)
《数学小灵通》2000年第2期
它有一定的规律性,排列如下(构成图),像上面的1、3、6、10、15等等这些能够表示成三角形的形状的总数量的数,叫做三角形数。一定数目的点或圆在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数。比如10个点可以组成一个等边三角形,因此10是一个三角形数:
x
x x
x x x
x x x x
x x x x x
开始个18个三角形数是1、3、6、10、15、21、28、36、45、55、66、78、91、105、120、136、153、171……(OEIS中的数列A000217)
第n个三角形数的公式是 或者 。
第n个三角形数是开始的n个自然数的和。
所有大于3的三角形数都不是质数。
开始的n个立方数的和是第n个三角形数的平方(举例:1 + 8 + 27 + 64 = 100 =102)
所有三角形数的倒数之和是2。
任何三角形数乘以8再加1是一个平方数。
一部分三角形数(3、10、21、36、55、78……)可以用以下这个公式来表示:n × (2n + 1);而剩下的另一部分(1、6、15、28、45、66……)则可以用n × (2n - 1)来表示。
一种检验正整数x是否三角形数的方法,是计算: 。
如果n是整数,那么x就是第n个三角形数。如果n不是整数,那么x不是三角形数。这个检验法是基于恒等式8Tn + 1 = S2n + 1.
特殊的三角形数
55、5,050、500,500、50,005,000……都是三角形数。
第11个三角形数(66)、第1111个三角形数(617,716)、第111,111个三角形数(6,172,882,716)、第11,111,111个三角形数(61,728,399,382,716)都是回文式的三角形数,但第111个、第11,111个和第1,111,111个三角形数不是。
和其他数的关系
四面体数是三角形数在立体的推广。
两个相继的三角形数之和是平方数。
三角平方数是同时为三角形数和平方数的数。
三角形数属於一种多边形数。
所有偶完美数都是三角形数。
任何自然数是最多三个三角形数的和。高斯发现了这个规律。他在1796年7月10日在日记中写道:EYPHKA! num = Δ + Δ + Δ
构成图
o n=1 s=1
o o n=2 s=3
o o o n=3 s=6
o o o o n=4 s=10