什么是平面向量?

于予与何诛2023-02-01  21

既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。

具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。

有向线段AB的长度叫做向量的模,记作|AB|。

有向线段包含3个因素:起点、方向、长度。

相等向量、平行向量、共线向量、零向量、单位向量:

长度相等且方向相同的向量叫做相等向量。

两个方向相同或相反的非零向量叫做平行向量,

向量a、b平行,记作a∥b,零向量与任意向量平行,即0∥a,

在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量)

长度等于0的向量叫做零向量,记作0。

零向量的方向是任意的;且零向量与任何向量都垂直。

长度等于1个单位长度的向量叫做单位向量。

平面向量

向量的概念

既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。

向量的几何表示

具有方向的线段叫做有向线段,以a为起点,b为终点的有向线段记作ab。(ab是印刷体,书写体是上面加个→)

有向线段ab的长度叫做向量的模,记作|ab|。

有向线段包含3个因素:起点、方向、长度。

长度等于0的向量叫做零向量,记作0。零向量的方向是任意的;长度等于1个单位长度的向量叫做单位向量。

相等向量与共线向量

长度相等且方向相同的向量叫做相等向量。

两个方向相同或相反的非零向量叫做平行向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,平行向量也叫做共线向量。

向量的运算

加法运算

ab+bc=ac,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点o出发的两个向量oa、ob,以oa、ob为邻边作平行四边形oacb,则以o为起点的对角线oc就是向量oa、ob的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ

>

0时,λa的方向和a的方向相同,当λ

<

0时,λa的方向和a的方向相反,当λ

=

0时,λa

=

0。

设λ、μ是实数,那么:(1)(λμ)a

=

λ(μa)(2)(λ

+

μ)a

=

λa

+

μa(3)λ(a

±

b)

=

λa

±

λb(4)(-λ)a

=-(λa)

=

λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积

已知两个非零向量a、b,那么|a||b|cos

θ叫做a与b的数量积或内积,记作a•b,θ是a与b的夹角,|a|cos

θ(|b|cos

θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

a•b的几何意义:数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cos

θ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。


转载请注明原文地址:https://juke.outofmemory.cn/read/2868166.html

最新回复(0)