svm算法是什么?

雄性2023-02-01  21

SVM算法中文翻译为支持向量机,它的英文全称是Support Vector Machine。

之所以叫作支持向量机,是因为该算法最终训练出来的模型,由一些支持向量决定。所谓的支持向量,也就是能够决定最终模型的向量。SVM算法最初是用来解决二分类问题的,而在这个基础上进行扩展,也能够处理多分类问题以及回归问题。

SVM算法的历史

早在1963 年,著名的前苏联统计学家弗拉基米尔·瓦普尼克在读博士期间,就和他的同事阿列克谢·切尔沃宁基斯共同提出了支持向量机的概念。

但由于当时的国际环境影响,他们用俄文发表的论文,并没有受到国际学术界的关注。直到 20 世纪 90 年代,瓦普尼克随着移民潮来到美国,而后又发表了 SVM 理论。此后,SVM 算法才受到应有的重视。如今,SVM 算法被称为最好的监督学习算法之一。

超级通俗的解释:支持向量机是用来解决分类问题的。先考虑最简单的情况,豌豆和米粒,用晒子很快可以分开,小颗粒漏下去,大颗粒保留。用一个函数来表示就是当直径d大于某个值D,就判定为豌豆,小于某个值就是米粒。d>D, 豌豆d<D,米粒在数轴上就是在d左边就是米粒,右边就是绿豆,这是一维的情况。但是实际问题没这么简单,考虑的问题不单单是尺寸,一个花的两个品种,怎么分类,假设决定他们分类的有两个属性,花瓣尺寸和颜色。单独用一个属性来分类,像刚才分米粒那样,就不行了。这个时候我们设置两个值尺寸x和颜色y.我们把所有的数据都丢到x-y平面上作为点,按道理如果只有这两个属性决定了两个品种,数据肯定会按两类聚集在这个二维平面上。


转载请注明原文地址:https://juke.outofmemory.cn/read/2860518.html

最新回复(0)