二进制的计算数据是用0和1两个数码来表示的数。基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。计算机中的二进制是一个非常微小的开关,用“开”来表示1,“关”来表示0。二进制的计算分为五种:
1、加法有四种情况: 0+0=0,0+1=1,1+0=1,1+1=10,0进位为1。
2、乘法有四种情况: 0×0=0,1×0=0,0×1=0,1×1=1。
3、减法有四种情况:0-0=0,1-0=1,1-1=0,0-1=1。
4、除法有两种情况:0÷1=0,1÷1=1。
5、拈加法二进制是加减乘除外的一种特殊算法。拈加法运算与进行加法类似,但不需要做进位。
扩展资料:
1、二进制的优点
数字装置简单可靠,所用元件少;只有两个数码0和1,因此它的每一位数都可用任何具有两个不同稳定状态的元件来表示;基本运算规则简单,运算操作方便。
2、缺点
用二进制表示一个数时,位数多。因此实际使用中多采用送入数字系统前用十进制,送入机器后再转换成二进制数,让数字系统进行运算,运算结束后再将二进制转换为十进制阅读。二进制数太长,需要将它转换成10进制数,或者先将这个二进制转换成16进制,然后再转换为10进制。
参考资料来源:百度百科-二进制
二进制计算法就是只用1和零来表示数字,我们平常说的是十进制,它是由0到9十个数字来表示的,具体的表示方法是,比如二进制0就是十进制的0,01就是十进制的1 11就是十进制的3, 100就是十进制的4。二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
加法法则: 0+0=0,0+1=1,1+0=1,1+1=10
减法,当需要向上一位借数时,必须把上一位的1看成下一位的(2)10。
减法法则: 0-0 =0,1-0=1,1-1=0,0-1=1 有借位,借1当(10) 看成 2 则 0 - 1 - 1 = 0 有借位 1 - 1 - 1 = 1 有借位。
乘法法则: 0×0=0,0×1=0,1×0=0,1×1=1
除法应注意: 0÷0 =0(无意义),0÷1 =0,1÷0 =0(无意义)
除法法则: 0÷1=0,1÷1=1