二维向量叉乘公式a(x1,y1),b(x2,y2),则a×b=(x1y2-x2y1),不需要证明的就是定义的运算。
三维叉乘是行列式运算,也是叉积的定义,把第三维看做0代入就行了。
代数规则
1、反交换律:a×b=-b×a
2、加法的分配律:a×(b+c)=a×b+a×c。
3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。
4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。
6、两个非零向量a和b平行,当且仅当a×b=0。
叉乘公式是:|向量c|=|向量a×向量b|=|a||b|sin<a,b>。
向量叉乘公式原理是向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断,用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向。
向量积数学中又称:
外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。
公式:a × b = |a| * |b| * sinθ 叉乘又叫向量的外积、向量积。
点乘和叉乘的区别:
点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。
向量a · 向量b=|a||b|cos<a,b>。
在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。
相关信息:
“正确”的向量由向量空间的方向确定,即按照给定直角坐标系(i, j, k)的左右手定则。若 (i, j, k)满足右手定则,则 (a, b, a×b)也满足右手定则;或者两者同时满足左手定则。
一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量。