哈希查找算法

江苏经贸2023-01-31  23

散列表(Hash table,也叫哈希表),是根据键(Key)而直接访问在内存存储位置的数据结构。也就是说,它通过计算一个关于键值的函数,将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度。这个映射函数称做散列函数,存放记录的数组称做散列表。

通过某种转换关系,使关键字适度的分散到指定大小的的顺序结构中,越分散,则以后查找的时间复杂度越小,空间复杂度越高。

Hash是一种典型以空间换时间的算法,比如原来一个长度为100的数组,对其查找,只需要遍历且匹配相应记录即可,从空间复杂度上来看,假如数组存储的是byte类型数据,那么该数组占用100byte空间。现在我们采用Hash算法,我们前面说的Hash必须有一个规则,约束键与存储位置的关系,那么就需要一个固定长度的hash表,此时,仍然是100byte的数组,假设我们需要的100byte用来记录键与位置的关系,那么总的空间为200byte,而且用于记录规则的表大小会根据规则,大小可能是不定的。

通过哈希函数,我们可以将键转换为数组的索引(0-M-1),但是对于两个或者多个键具有相同索引值的情况,我们需要有一种方法来处理这种冲突。

一种比较直接的办法就是,将大小为M 的数组的每一个元素指向一个链表,链表中的每一个节点都存储散列值为该索引的键值对,这就是拉链法。下图很清楚的描述了什么是拉链法。

“John Smith”和“Sandra Dee” 通过哈希函数都指向了152 这个索引,该索引又指向了一个链表, 在链表中依次存储了这两个字符串。

单独链表法:将散列到同一个存储位置的所有元素保存在一个链表中(聚集),该方法的基本思想就是选择足够大的M,使得所有的链表都尽可能的短小,以保证查找的效率。当链表过长、大量的键都会映射到相同的索引上,哈希表的顺序查找会转变为链表的查找,查找时间将会变大。对于开放寻址会造成性能的灾难性损失。

实现基于拉链表的散列表,目标是选择适当的数组大小M,使得既不会因为空链表而浪费内存空间,也不会因为链表太而在查找上浪费太多时间。拉链表的优点在于,这种数组大小M的选择不是关键性的,如果存入的键多于预期,那么查找的时间只会比选择更大的数组稍长。另外,我们也可以使用更高效的结构来代替链表存储。如果存入的键少于预期,索然有些浪费空间,但是查找速度就会很快。所以当内存不紧张时,我们可以选择足够大的M,可以使得查找时间变为常数,如果内存紧张时,选择尽量大的M仍能够将性能提高M倍。

线性探测法是开放寻址法解决哈希冲突的一种方法,基本原理为,使用大小为M的数组来保存N个键值对,其中M>N,我们需要使用数组中的空位解决碰撞冲突。如下图所示:

对照前面的拉链法,在该图中,“Ted Baker” 是有唯一的哈希值153的,但是由于153被“Sandra Dee”占用了。而原先“Snadra Dee”和“John Smith”的哈希值都是152的,但是在对“Sandra Dee”进行哈希的时候发现152已经被占用了,所以往下找发现153没有被占用,所以索引加1 把“Sandra Dee”存放在没有被占用的153上,然后想把“Ted Baker”哈希到153上,发现已经被占用了,所以往下找,发现154没有被占用,所以值存到了154上。

单纯论查找复杂度:对于无冲突的Hash表而言,查找复杂度为O(1)。

原文: 哈希查找 - 卖贾笔的小男孩 - 博客园 (cnblogs.com)

哈希查找(散列查找),与前面介绍的静态查找和动态查找方法完全不同,前面介绍的所有查找都是基于待查关键字与表中元素进行比较而实现的查找方法,而散列查找是通过构造哈希函数来得到待查关键字的地址,按理论分析真正不需要用到比较的一种查找方法。

2.哈希表定义:根据设定的哈希函数 H(key) 和所选中的处理冲突的方法,将一组关键字映象到一个有限的、地址连续的地址集 (区间) 上,并以关键字在地址集中的“象”作为相应记录在表中的存储位置,如此构造所得的查找表称之为“哈希表”

3.举例来说明:

假设有一批关键字序列18,75,60,43,54,90,46,给定哈希函数H(k)=k%13,存贮区的内存地址从0到15,则可以得到每个关键字的散列地址为:

H(18)=18%13=5,H(75)=75%13=10,H(60)=60%13=8,H(43)=43%13=4,H(54)=54%13=2,H(90)=90%13=12, H(46)=46%13=7,

于是,根据散列地址,可以将左边7个关键字序列存贮到一个一维数组HT(哈希表或散列表)中,具体

哈希查找不能适应动态变化。

哈希算法虽然有最快的查找效率,但建立哈希表无法适应动态变化的要求。

哈希查找是一种通过设计所存储数据元素与其存放地址之间的映射关系(函数关系)来实现高效查找的方法。比如我需要查询一个数460,那么根据先前存储时所采取的映射关系就可以准确地得到460相应的存储地址,从而实现高效查找。


转载请注明原文地址:https://juke.outofmemory.cn/read/2849385.html

最新回复(0)