菱形的基本性质:
1、菱形具有平行四边形的一切性质;
2、菱形的四条边都相等;
3、菱形的对角线互相垂直平分且平分每一组对角;
4、菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;
5、菱形是中心对称图形。
扩展资料:
在同一平面内,菱形的判定:
1、一组邻边相等的平行四边形是菱形;
2、对角线互相垂直的平行四边形是菱形;
3、四条边均相等的四边形是菱形;
4、对角线互相垂直平分的四边形;
5、两条对角线分别平分每组对角的四边形;
6、有一对角线平分一个内角的平行四边形。
平行四边形的性质:
1、夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)
2、如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
3、连接任意四边形各边的中点所得图形是平行四边形。
4、平行四边形的面积等于底和高的积。
5、过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
6、平行四边形是中心对称图形,对称中心是两对角线的交点。
菱形特殊的性质:
1、具有平行四边形的性质。
2、菱形的四条边相等。
3、菱形的对角线互相垂直,并且每一条对角线平分一组对角。
4、菱形是轴对称图形,它有两条对称轴。(特殊的菱形-正方形有4条对称轴)
菱形的判定:
在同一平面内:
1、一组邻边相等的平行四边形是菱形。
2、对角线互相垂直的平行四边形是菱形。
3、四条边均相等的四边形是菱形。
4、对角线互相垂直平分的四边形。
5、两条对角线分别平分每组对角的四边形。
6、有一对角线平分一个内角的平行四边形。
菱形的性质
1、对角线互相垂直且平分,并且每条对角线平分一组对角。
2、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形。
3、菱形是特殊的平行四边形,它具备平行四边形的一切性质。
4、四条边都相等。
5、对角相等,邻角互补。
6、在60°的菱形中,短对角线等于边长,长对角线是短对角线的根号三倍。
初二数学菱形的几何知识点归纳
1、判定
①有一组邻边相等的平行四边形是菱形
②四条边都相等的四边形是菱形
③对角线互相垂直的平行四边形是菱形
④有一条对角线平分一组对角的平行四边形是菱形
⑤对角线互相垂直且平分的四边形是菱形
2、面积
①对角线乘积的一半(只要是对角线互相垂直的四边形都可用)
②设菱形的边长为a,一个夹角为x°,则面积公式是:S=a^2·sinx
3、周长
菱形周长=边长×4 用“a”表示菱形的边长,“C”表示菱形的周长,
则C=4a
菱形是特殊的平行四边形,而菱形中又有特殊的一类就是正方形。