矩形是什么形状? 图片


矩形是一种特殊的平行四边形。图片如下:

性质1:矩形的四个内角都相等。

性质2:矩形的两条对角线相等。

性质3:矩形是轴对称图形,对称轴是一组对边中点的连线所在的直线。

另外,由矩形的性质可以得出:

(1)直角三角形斜边上的中线等于斜边的一半;

(2)矩形的对角线把矩形分成四个小的等腰三角形.

扩展资料

矩形的常见判定方法如下:

(1)有一个角是直角的平行四边形是矩形;

(2)对角线相等的平行四边形是矩形。

(3)有三个角是直角的四边形是矩形。

(4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。

(5)对角线相等且互相平分的四边形是矩形。

矩形如下图:

矩形:至少有三个内角都是直角的四边形是矩形,有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。矩形是一种特殊的平行四边形,正方形是特殊的矩形。矩形包括长方形和正方形。

由于矩形是特殊的平行四边形,故包含平行四边形的性质;矩形又可分为长方形和正方形,故包含长方形和正方形的一些共有的性质。矩形的性质大致总结如下:

(1)矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;

(2)矩形的四个角都是直角;

(3)矩形的对角线相等;

(4)长方形有2条对称轴,正方形有4条;

(5)具有不稳定性(易变形)。

扩展资料

矩形的常见判定方法如下:

(1)有一个角是直角的平行四边形是矩形。

(2)对角线相等的平行四边形是矩形。

(3)有三个角是直角的四边形是矩形。

(4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。

(5)对角线相等且互相平分的四边形是矩形。

参考资料:百度百科——矩形

矩形就是长方形,是一种特殊的平行四边形。正方形是特殊的矩形。

矩形定义

至少有三个内角都是直角的四边形是矩形,矩形也叫长方形。

矩形性质

由于矩形是特殊的平行四边形,故包含平行四边形的性质;矩形的性质大致总结如下:

(1)矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;

(2)矩形的四个角都是直角;

(3)矩形的对角线相等;

(4)具有不稳定性(易变形)。

正方形判定定理

1:对角线相等的菱形是正方形。

2:有一个角为直角的菱形是正方形。

3:对角线互相垂直的矩形是正方形。

4:一组邻边相等的矩形是正方形。

5:一组邻边相等且有一个角是直角的平行四边形是正方形。

6:对角线互相垂直且相等的平行四边形是正方形。

7:对角线相等且互相垂直平分的四边形是正方形。

8:一组邻边相等,有三个角是直角的四边形是正方形。

9:既是菱形又是矩形的四边形是正方形。

平行四边形

平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。

在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。

相比之下,只有一对平行边的四边形是梯形。平行四边形的三维对应是平行六面体。


转载请注明原文地址:https://juke.outofmemory.cn/read/2834704.html

最新回复(0)