一年级数学圆形的特点有哪些?


一年级数学圆形的特点如下:

1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等。

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。

7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。用字母表示为:d=2r或r=d/2。

8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

特点:

将一条线的一端固定不动,另一端旋转一周,所形成的平面图形叫圆形,所画的曲线为圆周。

例如硬币是圆形的,从圆心到圆周上任何一点的距离都是一样长,这个长度为半径。是一条光滑且封闭的曲线,圆上每一点到圆心的距离都是相等,到圆心的距离为R的点都在圆上,也就是说圆上的点没有一点到圆心的距离不相等。

在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圆心,r 是半径。圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。

扩展资料:

平面内,点P(x0,y0)与圆(x-a)²+(y-b)²=r²的位置关系判断一般方法是:

①如果(x0-a)²+(y0-b)²<r²,则P在圆内。

②如果(x0-a)²+(y0-b)²=r²,则P在圆上。

③如果(x0-a)²+(y0-b)²>r²,则P在圆外。

圆和圆位置关系:

①无公共点,一圆在另一圆之外叫外离,在之内叫内含。

②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含P<R-r;内切P=R-r;相交R-r<P<R+r。

参考资料来源:百度百科——圆

特征:

1.圆有无数条半径和无数条直径,且同圆内圆的半径长度永远相同。

2.圆是轴对称、中心对称图形。

3.对称轴是直径所在的直线。

扩展资料:

在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。

在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圆心,r 是半径。

圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。

圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。

圆的周长公式

圆的周长:

圆周长的一半 c=πr

半圆的周长 c=πr+2r

参考资料百度百科:园


转载请注明原文地址:https://juke.outofmemory.cn/read/2832821.html

最新回复(0)