椭圆的参数方程是什么?

墓虎2023-01-30  36

椭圆的参数方程x=acosθ,y=bsinθ。

(一个焦点在极坐标系原点,另一个在θ=0的正方向上)

r=a(1-e^2)/(1-ecosθ)

(e为椭圆的离心率=c/a)

求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解

x=a×cosβ, y=b×sinβ a为长轴长的一半

相关性质

由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥曲线(也称圆锥截线)。

例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):

将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。

设两点为F1、F2

对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2

则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2

由定义1知:截面是一个椭圆,且以F1、F2为焦点

用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆

例:已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3.

1.求椭圆C的方程.

2.直线l:y=x+1与椭圆交于A,B两点,P为椭圆上一点,求△PAB面积的最大值.

3.在⑵的基础上求△AOB的面积.

一、分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=√3,又c/a=√6/3,代入得c=√2,b=√(a^2-c^2)=1,方程是x^2/3+y^2/1=1,

二、要求面积,显然以ab作为三角形的底边,联立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-1.5,y2=-0.5.利用弦长公式有√(1+k^2))[x2-x1](中括号表示绝对值)弦长=3√2/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大。

过p做弦的平行线,可以 发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求得m=2,-2.结合图形m=-2.x=1.5,y=-0.5,p(1.5,-0.5)。

三、直线方程x-y+1=0,利用点到直线的距离公式求得√2/2,面积1/2*√2/2*3√2/2=3/4。

扩展资料

1、范围:焦点在x轴上-a≤x≤a -b≤y≤b焦点在y轴上-b≤x≤-b -a≤y≤a

2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。

3、顶点:(a,0)(-a,0)(0,b)(0,-b)

4、离心率:e=c/a

5、离心率范围 0<e<1

6、离心率越大椭圆就越扁,越小则越接近于圆

7.焦点 (当中心为原点时)(-c,0),(c,0)

参考资料:椭圆的百度百科

参数方程:

x = a*cost

y = b*sint

注意,t 不是 α

y/x = tg(α) = b/a * tg(t)

所求为:

r^2 = x^2 + y^2 = a^2 * (cost)^2 + b^2 * (sint)^2 =

(cost)^2 * [a^2 + b^2 * (tgt)^2] =

(cost)^2 * [a^2 + a^2 * tg(α)^2] =

(cost)^2 / (cosα)^2 * a^2 =

另一方面,

a^2/b^2 * tg(α)^2 = tg(t)^2 ====>

a^2/b^2 * tg(α)^2 + 1 = 1/(cost)^2 ====>

[ a^2 * (sinα)^2 + b^2 * (cosα)^2 ] / b^2 = (cosα)^2 /(cost)^2 ====>

r^2 = a^2 * b^2 / [ a^2 * (sinα)^2 + b^2 * (cosα)^2 ]

再开方就得到距离。

扩展资料:

椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。而公式中的b²=a²-c²。b是为了书写方便设定的参数。

又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx²+ny²=1(m>0,n>0,m≠n)。即标准方程的统一形式。

椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ。

标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a²+yy0/b²=1。椭圆切线的斜率是:-b²x0/a²y0,这个可以通过复杂的代数计算得到。

半径为r的圆柱上与一斜平面相交得到一椭圆,该斜平面与水平面的夹角为α,截取一个过椭圆短径的圆。以该圆和椭圆的某一交点为起始转过一个θ角。则椭圆上的点与圆上垂直对应的点的高度可以得到f(c)=r tanα sin(c/r)。

参考资料来源:百度百科--椭圆

参考资料来源:百度百科--椭圆的标准方程

椭圆的参数方程推导过程:

(1)的平方加(2)的平方

化简得:

证明:将任意一点P的坐标(Rsinθ-c,Rcosθ)代入方程

=

说明P点是椭圆标准方程上的一点。

扩展资料:

常见的参数方程——

曲线的极坐标参数方程ρ=f(t),θ=g(t)。

圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。

椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。

双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。

或者x=x'+ut,  y=y'+vt (t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)。

圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。


转载请注明原文地址:https://juke.outofmemory.cn/read/2827831.html

最新回复(0)