测定聚合物分子量的方法有哪些

海王女主2023-01-30  34

测定聚合物分子量通常采用的方法是凝胶渗透色谱法(GPC)。凝胶色谱不但可以用于分离测定高聚物的相对分子质量和相对分子质量分布,同时根据所用凝胶填料不同,可分离脂溶性和水溶性物质,分离相对分子质量的范围从几百万到100以下。近年来,凝胶色谱也广泛用于小分子化合物。相对分子质量相近而化学结构不同的物质,不可能通过凝胶渗透色谱法达到完全分离纯化的目的。凝胶色谱不能分辨分子大小相近的化合物,相对分子质量相差需在10%以上才能得到分离。

一、影响聚合物相对分子质量的因素:

1、 链转移反应对平均聚合度的影响

2、 终止方式对平均聚合度的影响

2、 单体浓度对平均聚合度的影响

4、 引发剂浓度对平均聚合度的影响

5、聚合温度对平均聚合度的影响

二、聚合物的相对分子质量是表征聚合物性能的一个重要指标。合成聚合物的相对分子质量用动力学链长和平均聚合度两个物理量来表示。无链转移时,聚合物的相对分子质量用动力学链长表示。有链转移时,聚合物的相对分子质量用平均聚合度表示。

1、链转移反应对平均聚合度的影响:链转移终止使链自由基提早终止,使聚合物相对分子质量降低,因此在讨论聚合物的相对分子质量时,必须考虑链转移反应对聚合物相对分子质量(或平均聚合度)的影响。

2、 终止方式对平均聚合度的影响:自由基聚合体系中,链转移反应也是一种终止反应,可称之为链转移终止。链转移终止使链自由基提早终止,使聚合物相对分子质量降低。

3、 单体浓度对平均聚合度的影响:聚合物的动力学链长与c(M)的一次方成正比,由此可知,提高单体浓度可以同时提高聚合速率和聚合物的相对分子质量。

4、 引发剂浓度c(I)对平均聚合度的影响: 聚合物的动力学链长与c(I)1/2成反比;聚合反应的速率与c(I)1/2成正比。 c(I)对Rp的影响与对Xn的影响恰恰相反,所以引发剂用量很重要, 其用量往往要经过多次实验才能最后确定。

5、聚合温度T 对平均聚合度的影响:温度对平均聚合度的影响集中体现在K=Kp/( KdxKt)^(1/2),总活化能为负值说明温度升高使聚合物的平均聚合度降低。

利用核磁算聚合物分子量:A-B的聚合物体系中,A中的a为其特有吸收峰,并不会与B的所有峰重合,然后选出B中特有的吸收峰b,比如说是甲基,用甲基的积分面积除以3就是一个氢的积分面积。再用a的积分面积除以前面一个氢的积分面积,得到的值就认为是A中的氢的总数。再换算成A的分子量,加上已知的B的分子量,就是整个产物的分子量。

由于原子核携带电荷,当原子核自旋时,会产生一个磁矩。这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。进动频率又称Larmor频率:

υ=γB/2π

γ为磁旋比,B是外加磁场的强度。磁旋比γ是一个基本的核常数。可见,原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在已知强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。

原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,自旋量子数为I的核在外加磁场中有2I+1个不同的取向,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。这些能级的能量为:

E= -γhmB/2π

式中,h是Planck常数(普朗克常数)(6.626x10-34);m 是磁量子数,取值范围从-I到+I,即m= -I, -I+1, … I-1, I。

当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。根据选择定则,能级的跃迁只能发生在Δm=±1之间,即在相邻的两个能级间跃迁。这种能级跃迁是获取核磁共振信号的基础。根据量子力学,跃迁所需要的能量变化:

ΔE=γhB/2π

为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。当外加射频场的频率与原子核自旋进动的频率相同的时候,即入射光子的频率与Larmor频率γ相符时,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。


转载请注明原文地址:https://juke.outofmemory.cn/read/2826211.html

最新回复(0)