n维向量什么意思?

佳能g122023-01-29  34

是指向量的元素个数为n。比如,三维向量的形式为α=(x1,x2,x3),五维向量的形式为β=(x1,x2,x3,x4,x5)。

向量,指具有大小和方向的几何对象,可以形象化地表示为带箭头的线段:箭头所指,代表向量的方向、线段长度,代表向量的大小。

向量可以用有向线段来表示:

有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。

在2维空间中,两个2维向量构成的的行列式的值,等同于两个向量组成的平行四边形面积大小。也就是说,在2维空间中,两个2维向量构成的的行列式的值,等同于两个2维向量的【叉积】。

是普通平面和空间向量概念的推广,是一种特殊的矩阵。

由数a1,a2....an组成的有序数组,称为n维向量,简称为向量。向量通常用斜体希腊字母等表示。在一个向量组中,若有一个部分向量组线性相关, 则整个向量组也必定线性相关,反之不成立。推论一个线性无关的向量组的任何非空的部分向量组都 线性无关。

在机器学习过程中,我们会经常遇到向量、数组和矩阵这三种数据结构,下面就这三种数据结构做一次详细的分析。同时我们时常困惑于维度,n维向量,n维数组,矩阵的维度,本文着重就这一方面进行分析。

解析几何中,我们把“既有大小又有方向的量”叫作向量,并把可随意平行移动的有向线段作为向量的几何形象。

在引进坐标系以后,这种向量就有了坐标表示式— — n个有次序的实数,也就是n维向量。因此,当 n ≤ 3 时,n维向量可以把有向线段作为几何形象,但当n>3 时,n 维向量就不再有这种几何形象,只是沿用一些几何术语罢了。

3维向量空间:

在点空间取定坐标系以后,空间中的点P(x,y,z)与3 维向量 r =(x,y,z)T 之间有一一对应的关系,因此,向量空间可以类比为取定了坐标系的点空间。在讨论向量的运算时,我们把向量看作有向线段;在讨论向量集时,则把向量r 看作以r 为向径的点P,从而把点P 的轨迹作为向量集的图形。

在同济大学线性代数第六版中,有这样一句话,矩阵的列向量组和行向量组都是只含有限个向量的向量组;反之,一个含有限个向量的向量组总可以构成一个矩阵。因此我们可以推断,列向量是可以多维的,但是它的深度只能是一维(这里的深度是相对于矩阵和数组而言的,而这里的维度是指的空间的维度,这是两个不同的概念)。


转载请注明原文地址:https://juke.outofmemory.cn/read/2823738.html

最新回复(0)