平行向量的概念是:共线向量,是指方向相同或相反的非零向量。零向量与任意向量平行。
向量:既有大小又有方向的量叫向量。
单位向量:长度为1个单位长度的向量。
平行向量:也叫共线向量,方向相同或相反的非零向量。
相等向量:长度相等且方向相同的向量。
相反向量:长度相等且方向相反的向量。
比较:
共线向量与平行向量关系
由于任何一组平行向量都可移到同一直线上,故平行向量也叫做共线向量。
平行向量与相等向量的关系
相等的向量一定平行,但是平行的向量并不一定相等。两个向量相等并不一定这两个向量一定要重合。只用这两个向量长度相等且方向相同即可。其中“方向相同”就包含着向量平行的含义。
平行向量(也叫共线向量):方向相同或相反的非零向量
a
、
b
叫做平行向量,记作:
a
∥
b
,规定零向量和任何向量平行。
加法运算
ab+bc=ac,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点o出发的两个向量oa、ob,以oa、ob为邻边作平行四边形oacb,则以o为起点的对角线oc就是向量oa、ob的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。以减向量的终点为起点,被减向量的终点为终点(三角形法则)
数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ
>
0时,λa的方向和a的方向相同,当λ
<
0时,λa的方向和a的方向相反,当λ
=
0时,λa
=
0。
设λ、μ是实数,那么:(1)(λμ)a
=
λ(μa)(2)(λ
+
μ)a
=
λa
+
μa(3)λ(a
±
b)
=
λa
±
λb(4)(-λ)a
=-(λa)
=
λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算