t值与p值对应表

青浦奥特莱斯2023-02-03  23

t 分布

t分布(t-distribution),用于根据小样本来估计呈正态分布且方差未知的总体的平均值

如果总体方差已知,则应该使用正态分布

自由度越大,t分布越接近标准正太分布

随自由度的增大,t分布逐渐逼近标准正太分布

t分布曲线的特点:

t分布曲线是单峰分布,它以0为中心,左右对称

t分布的形状与样本数n有关。自由度越小,t值越分散,曲线的峰部越矮

t分布不是一条曲线,而是很多曲线的集合(一簇曲线)

t界值表:

t 检验

T检验,也称为Student's t test,主要用户样本含量较小,总体标准差未知的正太分布资料

T检验,是用于小样本的两个平均值差异程度的检验方法。它是用T分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。

以t分布为基础的一类比较均数的假设检验方法。

成立时,统计量t服从自由度为v=n-1的t分布

事先规定一个较小的概率

,若p值小于

,拒绝零假设;若p值不小于

,则不拒绝零假设。

T检验的应用:

单样本检验(one sample t test)

检验一个正态分布的总体的均值是否在满足零假设的值之内

推断样本所属总体的均数是否与已知值有差异

提出无效假设

:

,备选假设

双侧检验,检验水准

求t值,

自由度=35-1=34

通过查表,可知,0.05对应的t值是2.032

先,提出无效假设

:苗木的平均高度=1.60m,替换假设

:苗木的平均高度>1.60m

(这里我是有个疑问,对立假设,不应该是

,为什么可以直接大于呢?)

然后,带入公式,求t值

样本数=10,自由度=9,查表知道0.05对应的是2.262,我们的t值=2.55

所以,我们的p值是小于临界值2.262的,我们拒绝原假设,选择备选假设,平均高度大于1.60m,符合要求。

这里的话,使用Excel是可以求p值的,使用函数:TDIST

配对样本T检验

配对设计(paired design),是一种特殊的设计方式,能够很好地控制非实验因素对结果的影响,有自身配对和异体配对之分

将受试对象的某些重要特征按相近的原则配成对子,目的是消除混杂因素的影响,一对观察对象之间除了处理因素/研究因素之外,其它因素基本齐同,每对中的两个个体随机给予两种处理

t值和P值都用来判断统计上是否显著的指标。p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值。P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。

扩展资料:

Fisher的具体做法是:

假定某一参数的取值。

选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。

从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值。

如果0.01<P值<0.05,说明较弱的判定结果,拒绝假定的参数取值。

如果P值>0.05,说明结果更倾向于接受假定的参数取值。


转载请注明原文地址:https://juke.outofmemory.cn/read/2880202.html

最新回复(0)