什么是三垂线定理?怎样理解?

五鼠2023-02-01  27

三垂线定理指的是平面内的一条直线,如果与穿过这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。

三垂线定理的实质是空间内的一条斜线和平面内的一条直线垂直的判定定理。三垂线定理是立体几何的重要定理之一,由于定理中涉及三条与平面内已知直线有垂直关系的直线,故称为三垂线定理。

其实三垂线定理从证明的角度看,可以认为是线面垂直转化关系的一个常用推论。这是一个标准的从线线垂直(一般是共面)转化为线面垂直又转化为新的线线垂直(一般是异面)的立体几何推理过程。

但换一个观点和角度来看,三垂线定理的价值在于将一个需要进行多次转化而且模式基本确定的证明过程以定理的形式规范下来,这使得在相关的证明(之后还有计算)过程中书写难度得到有效降低,在部分复杂题目中更是如此。

而从很多立体几何题目设计的思路来看,经常会出现两条看似无关直线(一般是异面)的关系问题,一般方法是让他们在不同平面中分别找关系,然后利用一个桥梁进行沟通;三垂线定理正是提供了这样一个可以进行简便沟通的方式。

三垂线定理的用途

1、在做图中,做二面角的平面角。

2、在证明中,证明线线垂直。

3、在计算中,用归纳法归拢已知条件,便于计算。

扩展资料:

关于三垂线定理的应用,关键是找出平面(基准面)的垂线。至于射影则是由垂足,斜足来确定的,因而是第二位的。 

从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证。

即第一,找平面(基准面)及平面垂线第二,找射影线,这时a,b便成平面上的一条直线与一条斜线。第三,证明射影线与直线a垂直,从而得出a与b垂直。

参考资料来源:百度百科——三垂线定理

三垂线定理指的是平面内的一条直线,如果与穿过这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。

线面垂直证明,例如已知:PO 在 α 上的射影 OA 垂直于 a 。求证:OP⊥a。

证明:过 P 做 PA 垂直于 α

∵PA⊥α且a⊂α,∴a⊥PA

又a⊥OA,OA∩PA=A

∴a⊥平面POA,∴a⊥OP

扩展资料

三垂线定理对任意位置的平面都成立。因为定理中并没有水平平面的限制,定理的实质是研究平面内的一条直线与这个平面的斜线及斜线在这个平面内的射影三者的垂直关系,与平面的位置无关。

因为a是平面α内的任意一条直线,所以a与斜线PO的位置关系有两种情况:一是不过斜足O的异面垂直;一是过斜足O的相交垂直,反映三垂线定理的图形有四种情况。在复杂图形中应用三垂线定理时,需要先确定反映三垂线定理的基本图形,然后才能着手证明,因而掌握三垂线的证题步骤是十分必要的。

参考资料来源:百度百科—三垂线定理


转载请注明原文地址:https://juke.outofmemory.cn/read/2868173.html

最新回复(0)