等式的基本性质1和2

淳常在2023-01-31  23

等式的基本性质1是等式两边同时加或减同一个数等式仍相等;等式的基本性质2是等式两边同时乘以一个相同的式子等式仍成立。等式分为含有未知数的等式和不含未知数的等式。

含有等号的式子叫做等式。等式可分为矛盾等式和条件等式。等式两边同时加上(或减去)同一个整式,或者等式两边同时乘或除以同一个不为0的整式,或是等式左右两边同时乘方,等式仍然成立。

等式具有传递性。等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质。如移项,运用了等式的性质1;去分母,运用了等式的性质2。运用等式的性质,涉及除法时,要注意转换后,除数不能为0,否则无意义。

恒等式是无论其变量如何取值,等式永远成立的算式。恒等式成立的范围是左右函数定义域的公共部分,两个独立的函数却各自有定义域,与x在非负实数集内是恒等的,而在实数集内是不恒等的。

等式的性质1:

等式两边同时加上或减去同一个整式,等式仍然成立例如a等于b,那么有a加上c等于b加上c,或a减去c等于b减去c。

等式的性质2:

等式两边同时乘或除以同一个不为0的整式,等式仍然成立。例如a等于b,在c不等于0的情况下,那么有a乘以c等于b乘以c,或a除以c等于b除以c 。

等式的性质3:等式具有传递性。若a1等于a2,a2等于a3,a3等于a4,那么有a1等于a2等于a3等于a4。


转载请注明原文地址:https://juke.outofmemory.cn/read/2849507.html

最新回复(0)