矩阵的行列式怎么求


对于数值型行列式来说,我们先看低阶行列式的计算,对于二阶或者三阶行列式其是有自己的计算公式的,我们可以直接计算。三阶以上的行列式,一般可以运用行列式按行或者按列展开定理展开为低阶行列式再进行计算,对于较复杂的三阶行列式也可以考虑先进行展开。

在运用展开定理时,一般需要先利用行列式的性质将行列式化为某行或者某列只有一个非零元的形式,再进行展开。特殊低阶行列式可以直接利用行列式的性质进行求解。

对于高阶行列式的计算,我们的基本思路有两个:一是利用行列式的性质进行三角化,也就是将行列式化为上三角或者下三角行列式来计算二是运用按行或者按列直接展开,其中运用展开定理的行列式一般要求有某行或者某列仅有一个或者两个非零元,如果展开之后仍然没有降低计算难度,则可以观察是否能得到递推公式,再进行计算。

可以使用行列式的定义来求矩阵的行列式,行列式的定义是:若矩阵A的元素为 aij,则它的行列式值 D 是:

D= a11*a22*a33*...*aan - a12*a21*a33*...*aan + a13*a21*a32*...*aan - ... + (-1)n+1*a1n*a2n*...*aan-1

其中 n 是矩阵 A 的秩。


转载请注明原文地址:https://juke.outofmemory.cn/read/2843227.html

最新回复(0)