康托尔三分集的形成过程实际上斯梅尔的马蹄映射也会形成康托尔集。
康托尔定理:用P(X)记X的一切子集构成的集,用cardX表示X的势,康托尔定理如下:cardX<cardP(X)
.证明:对于空集来说,上述结论显然成立,所以可设X≠空集。因为P(X)含有X的一切单元素子集,故cardX≤cardP(X),现只需证明两者不相等。若相等,假定f:X-P(X)是双射,考察集合A={x∈X|x不∈f(x)},它由那样一些元素x∈X,x不含于它对应的集f(x)∈P(X),,组成的。因为A∈P(X),所以必能找到一个元素a∈X,使f(a)=A,这个元素a∈X既不能有a∈A(据A的定义),也不能有a不∈A(也是根据A的定义),这与排中律矛盾。得证。
康托尔-伯恩斯坦-施罗德定理(Cantor-Bernstein-Schroeder theorem)是集合论中的一个基本定理,得名于康托尔、Felix Bernstein 和 Ernst Schröder。该定理陈述说:如果在集合 A 和 B 之间存在单射f : A → B 和 g : B → A,则存在一个双射 h : A→ B。从势的角度来看, 这意味着如果 |A| ≤ |B| 并且 |B| ≤ |A|,则 |A| = |B|,即A与B等势。显然,这是在基数排序中非常有用的特征。两个无穷大量之和不一定是无穷大;有界量与无穷大量的乘积不一定是无穷大(如常数0就算是有界函数);有限个无穷大量之积一定是无穷大。另外,一个数列不是无穷大量,不代表它就是有界的(如:数列1,1/2,3,1/3,……)。
无穷大介绍
在集合论中对无穷有不同的定义。德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的“无穷”。
这里比较不同的无穷的“大小”的时候唯一的办法就是通过是否可以建立“一一对应关系”来判断,而抛弃了欧几里得“整体大于部分”的看法。例如整数集和自然数集由于可以建立一一对应的关系,它们就具有相同的无穷基数。
自然数集是具有最小基数的无穷集,它的基数用希伯来字母阿列夫右下角标来表示。
可以证明,任何一个集合的幂集(所有子集所形成的集合)的比原集合大,如果原来的基数是a,则幂集的基数记为(2的a次方)。这称为康托尔定理。
对于两个无穷集合,可以以能否建立它们之间的双射,作为比较其大小的标准。
确切地讲,我们用基数的概念来描述集合,对于有限集合而言,可以认为它的基数就是元素的个数,但对无穷集而言,基数只能以下面的方式理解(当然也可以据此把无穷集合的基数说成是它元素的个数,但这个个数已经不是日常用语中的意思)。
如果集合A与集合B之间存在双射(一一对应),就认为它们的基数一样大;如果A与B的某个子集有双射,就认为A的基数不比B更大,也就是A到B有单射,B到A有满射;当A的基数不比B更大,且A、B基数不一样大时,就认为A比B基数小。
在ZFC集合论的框架下,任何集合都是良序的,从而两个集的基数总是大于、小于、等于中的一种,不会出现无法比较的情况。但若不包括选择公理,只有良序集的基数才能比较。
例如,可数集合,如自然数集,整数集乃至有理数集对应的基数被定义为“阿列夫零”。比可数集合“大”的称之为不可数集合,如实数集,其基数与自然数的幂集相同,为二的阿列夫零次方,被定义为“阿列夫壹”。
由于一个无穷集合的幂集总是具有比它本身更高的基数,所以通过构造一系列的幂集,可以证明无穷的基数的个数是无穷的。然而有趣的是,无穷基数的个数比任何基数都多,从而它是一个比任何无穷大都要大的“无穷大”,它不能对应于一个基数,否则会产生康托尔悖论的一种形式。