Z:整数集合{……,-1,0,1,……}
Q:有理数集合
R:实数集合
此外还有以下其他的字母:
Q+:正有理数集合
Q-:负有理数集合
P:质数集合
N:非负整数集合或自然数集合{0,1,2,3,……}
N或N+:正整数集合{1,2,3,……}
R+:正实数集合
R-:负实数集合
C:复数集合
∅:空集合(不含有任何元素的集合称为空集合)
U:全集合(包含了某一问题中所讨论的所有元素的集合)
在数学里用大写符号Z表示全体整数的集合,包括正整数、0、负整数。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。
正整数:它是从古代以来人类计数的工具。可以说,从“1头牛,2头牛”或是“5个人,6个人”抽象化成正整数的过程是相当自然的。
零不仅表示“没有”(“无”),更是表示空位的符号。
集合如下:
在数学里用大写符号Z表示全体整数的集合,包括正整数、0、负整数,按照新规定,正整数和0组成的集合又称为自然数,通常记为N。所有正整数组成的集合称为正整数集,记作N,Z+或N+;所有负整数组成的集合称为负整数集,记作Z-。
简介:
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。
集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
在数学里用大写符号Z表示全体整数的集合,包括正整数、0、负整数,按照新规定,正整数和0组成的集合又称为自然数,通常记为N。
常用的数集及其记法:
所有正整数组成的集合称为正整数集,记作N,Z+或N+;
所有负整数组成的集合称为负整数集,记作Z-;
全体非负整数组成的集合称为非负整数集(或自然数集),记作N;
全体整数组成的集合称为整数集,记作Z;
全体有理数组成的集合称为有理数集,记作Q;
全体实数组成的集合称为实数集,记作R;
全体虚数组成的集合称为虚数集,记作I;
全体实数和虚数组成的复数的集合称为复数集,记作C。
以上就是关于数学中的Z,Q,R分别是什么…有哪些数全部的内容,包括:数学中的Z,Q,R分别是什么…有哪些数、z属于什么数、集合z代表什么意思等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!