测试信度(test reliability)也叫测试的可靠性,指的是测试结果是否稳定可靠。也就是说,测试的成绩是不是反映了受试者的实际语言水平。例如,如果同一套测试在对同一测试对象(即受试者本身没有变化)进行的数次测试中,受试者的分数忽高忽低的话,则说明该测试缺乏信度。测试的信度与测试的效度有着密切的关系。一般说来,只有信度较高的测试才能有较高的效度,但效度较高不能保证信度也一定较高。测试的信度主要涉及到试题本身的可靠性和评分的可靠性这两个方面。试题本身是否可靠主要取决于试题的范围、数量、试题的区分度等因素;评分是否可靠则要看评分标准是否客观和准确。
测试的信度通常用一种相关系数(即两个数之间的比例关系)来表示,相关系数越大,信度则越高。当系数为100时,说明测试的可靠性达到最高程度;而系数是000时,则测试的可靠性降到最低程度。在一般情况下,系数不会高到100,也不会降到000,而是在两者之间。对信度指数的要求因测试类别的不同而不同,人们通常对标准化测试的信度系数要求在090以上,例如“托福”的信度大致为095,而课堂测试的信度系数则以070-080之间为可接受性系数。测试信度的计算方法有很多种,以下仅介绍三种易于操作的方法:
1)重测法(the retesting method)。用同一套试卷在两个不同时间内来测试同一批受试者,这样便获得两组分数,然后计算出两组分数的相关系数。当然,在两次测试中,学生第二次的测试成绩理应比第一次的要高,因为在第二次测试时学生已经有了进步而且临场经验也更丰富了。但是若该试题是比较可靠的,每个学生在两次测试中的排名次序应该是基本不变的。
2)交替形式法(the alternative method)。对同一批受试者使用试题类型完全相同,难易程度相当,但具体题目不同的两套对等试卷先后进行两次测试,然后计算出两次得分的相关系数。
3)对半法(the split-half method)。测试只进行一次,但将整份试卷的题目按单、双数分成两组来分别计分,算出两组分数的相关系数,然后再用Spearman-Brown的公式计算整份试卷的信度系数。具体计算步骤是:将两组分数的相关系数乘以2,再除以1加两组分数的相关系数。
>
效度的检验方法:内容效度、构想效度、效标效度。
1、重测信度法
这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。
重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。
2、复本信度法
复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。
复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。
3、折半信度法
折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。
4、α信度系数法
Cronbachα信度系数是目前最常用的信度系数,其公式为:α=(k/(k-1))(1-(∑Si^2)/ST^2)
其中,K为量表中题项的总数,Si^2为第i题得分的题内方差,ST^2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。
总量表的信度系数最好在08以上,07-08之间可以接受;分量表的信度系数最好在07以上,06-07还可以接受。Cronbach'salpha系数如果在06以下就要考虑重新编问卷。
5、内容效度
内容效度经常与表面效度(facevalidity)混淆。表面效度是由外行对测验作表面上的检查确定的,它不反映测验实际测量的东西,只是指测验表面上看来好像是测量所要测的东西;内容效度是由够资格的判断者(专家)详尽地、系统地对测验作评价而建立的。
6、构想效度
对测验本身的分析,测验间的相互比较:相容效度(与已成熟的相同测验间的比较)、区分效度(与近似或应区分测验间的比较)、因素分析法,效标效度的研究证明,实验法和观察法证实。
7、效标效度
效标,即衡量测验有效性的参照标准,指的是可以直接而且独立测量的我们感兴趣的行为。我们感兴趣的行为,就是要预测的行为,这是一个总的观念,故必须以可操作的测量来确定才有实际意义。
因此有必要把效标细分为两个层次,其一是理论水平的“观念效标”,其二是操作定义水平的“效标测量”。
扩展资料:
效度和信度的关系可以用测量值的构成公式O=TSR来理解。
如果测量是完全有效的,即0=T,S=0,R=0,此时测量必然是完全可信的,若量表的信度不足,它也不可能完全有效,因为有O=TR。
如果量表是完全可信的,可以达到完全有效,也可能达不到,因为有可能存在导致误差,虽然缺乏信度必然缺乏效度,但信度的大小并不能体现效度的大小。
信度是效度的必要条件,但不是充分条件。从理论的角度来看,量应具有足够的效度和信度;从实践的观点来看,一个好的量表还应该具有实用性。实用性指量表的经济性、便利性和可解释性。
一般来说,信度是效度的必要条件,也就是说,效度都必须建立在信度的基础上;但是没有效度的测量,即使它的信度再高,这样的测量也是没有意义的。
参考资料:
百度百科-信度分析
百度百科-信度
百度百科-效度
(1) 信度低,效度不可能高。因为如果测量的数据不准确,也并不能有效地说明所研究的对象。
(2) 信度高,效度未必高。例如,如果我们准确地测量出某人的经济收入,也未必能够说明他的消费水平。
(3) 效度低,信度很可能高。例如,即是一项研究未能说明社会流动的原因,但它很有可能很精确很可靠地调查各个时期各种类型的人的流动数量。
(4) 效度高,信度也必然高。
扩展资料
信度是指测验结果的一致性、稳定性及可靠性,一般多以内部一致性来加以表示该测验信度的高低。信度系数愈高即表示该测验的结果愈一致、稳定与可靠。系统误差对信度没什么影响,因为系统误差总是以相同的方式影响测量值的,因此不会造成不一致性。反之,随机误差可能导致不一致性,从而降低信度。
信度(reliability)即可靠性,它指的是采取同样的方法对同一对象重复进行测量时,其所得结果相一致的程度。从另一方面来说,信度就是指测量数据的可靠程度。
举例而言,对于“图书馆利用情况及满意度调查问卷”的第一部分第1题,若对同一个人相隔3天,问同一个问题,若第一次回答,被调查者选择A、第二次回答选择C、第三次回答选择D,则说明对于该问题调查结果的信度低,因为调查结果的差异较大。若三次都选择相同的答案或者差异较小的答案,则在排除系统误差的条件下,说明调查结果的信度较高。
效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度是指所测量到的结果反映所想要考察内容的程度,测量结果与要考察的内容越吻合,则效度越高;反之,则效度越低。效度分为三种类型:内容效度、准则效度和结构效度。
效度是测量的有效性程度,即测量工具确能测出其所要测量特质的程度,或者简单地说是指一个测验的准确性、有用性。效度是科学的测量工具所必须具备的最重要的条件。在社会测量中,对作为测量工具的问卷或量表的效度要求较高。鉴别效度须明确测量的目的与范围,考虑所要测量的内容并分析其性质与特征,检查测量的内容是否与测量的目的相符,进而判断测量结果是否反映了所要测量的特质的程度;
参考资料:
以上就是关于调查问卷的信度和效度怎么写全部的内容,包括:调查问卷的信度和效度怎么写、如何做量表的信度和效度检验、信度与效度的区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!