不定积分公式:∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。
不定积分的积分公式主要有如下几类:
含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分。
含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。
扩展资料:
积分性质
1、线性性
积分是线性的。如果一个函数f 可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
2、保号性
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
参考资料来源:百度百科—积分公式
首先,用U和u作为变量,仅仅大小写非常难区分,这个习惯不好
其次下面步骤太麻烦了
因为U=lnu, U' = 1/u,所以1/u du = dU是可以直接得出的
第三,你反求导的式子是错误的
d(ln|lnu-1|+C)/du = 1/(lnu-1) d(lnu-1) =1/(lnu-1) (1/u) = 1/u(lnu-1),你的 1/(u-1)部分毫无道理
定积分的导数是0,是一个常数,不定积分求导的结果是被积式加一个常数。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。
一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
定积分定理:
把函数在某个区间上的图象a,b分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。
一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。
不定积分就是原函数。不定积分是一个函数集,它是所积函数的原函数。在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。
定积分是一个数,不定积分可以看成是一种运算,但最后的结果不是一个数,而是一类函数的集合。不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减。
类型1、下限为常数,上限为函数类型
第一步:对于这种类型只需将上限函数代入到积分的原函数中去,再对上限函数进行求导。
第二步:对下面的函数进行求导,只需将“X”替换为“t”再进求导即可。
类型2、下限为函数,上限为常数类型
第一步:基本类型如下图,需要添加“负号”将下限的函数转换到上限,再按第一种类型进行求导即可。
第二步:题例如下,添加“负号”转换为变上限积分函数求导即可。
类型3、上下限均为函数类型
第一步:这种情况需要将其分为两个定积分来求导,因为原函数是连续可导的,所以首先通过“0”将区间[h(x),g(x)]分为[h(x),0]和[0,g(x)]两个区间来进行求导。
第二步:然后将后面的变下限积分求导转换为变上限积分求导。
第三步:接着对两个区间的变上限积分分别求导即可得到下面公式。
第四步:对于这种题,可以直接套公式,也可以自己推导。
总结
对于变限积分求导,通常将其转换为变上限积分求导,求导时,将上限的变量代入到被积函数中去,再对变量求导即可。
扩展资料
众所周知,微积分的两大部分是微分与积分。微分实际上是函数的微小的增量,函数在某一点的导数值乘以自变量以这点为起点的增量,得到的就是函数的微分;它近似等于函数的实际增量(这里主要是针对一元函数而言)。
而积分是已知一函数的导数,求这一函数。所以,微分与积分互为逆运算。
实际上,积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x)。
因为F(x)+C的导数也是f(x),C是任意的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。
用公式表示是:f'(x)=g(x)->∫g(x)dx=f(x)+c
以上就是关于不定积分公式推导全部的内容,包括:不定积分公式推导、不定积分求导问题、定积分的导数是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!