tan90度是一个不存在的值,因为tan(90度)=sin(90度)/cos(90度)=1/0,在除法当中除数不能够为0,所以说tan(90度)是一个不存在的值。
在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
扩展资料:
正切函数(tan函数)的性质:
1、定义域为{x|x≠(π/2)+kπ,k∈Z}、值域为R、奇偶性,为奇函数、周期性,有,最小正周期:π。
2、单调性:有,单调增区间:(-π/2+kπ,+π/2+kπ),k∈Z,单调减区间:无。
特殊角的tan值:tan15°=2-√3、tan30°=√3/3、tan45°=1、tan60°=√3、tan75°=2+√3。
tan重要的公式:
1、tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
2、tanα=2tan(α/2)/[1-tan^2(α/2)]。
3、tan^2(α)=(1-cos(2α))/(1+cos(2α))。
4、tan(2α)=2tanα/[1-tan^2(α)]。
5、tan^2(α)+1=sec^2(α)。
参考资料来源:百度百科-正切
选(B)
方法一:
设cosz=2/sqrt(13),sinz=3/sqrt(13)
那么y=sqrt(13)cos(z+x)
z+x=2kpi时取最大值,此时cosx=cosz,sinx=-sinz,于是tanx=-tanz=-3/2
方法二:
把(cosx,sinx)视为单位圆u^2+v^2=1上的点(u=cosx,v=sinx),max{y=2v-3u}表示找和单位圆有公共点的斜率为2/3的最“低”的一条直线,这个必然是切线,利用垂线的斜率乘积为-1即得tanx=-3/2
tan函数是以180°为周期的周期函数。
以-90°到90°为例,是从把-90°当为负无穷,90°为正无穷,其间为连续取值,从负无穷一直到正无穷。
然后90°到270°又是一个周期,90为负无穷,270为正无穷,以此类推,负数也一样。
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。
其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
正切是tanα=b/a。
余切是cotα=a/b。
正弦是sinα=b/c。
余弦是cosα=a/c。
正割是secα=c/a。
余割是cscα=c/b。
正矢是versinθ=1-cosθ。
余矢是vercosθ=1-sinθ。
对于任意一个实数x,都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正切值tanx,按照这个对应法则建立的函数称为正切函数。
形式是f(x)=tanx 正切函数是区别于正弦函数的又一三角函数,它与正弦函数的最大区别是定义域的不连续性。
扩展资料
应用:
1、正切值在数值上与坡度相等,坡度=正切值x100%。
2、三角函数在复数领域有较为广泛的应用,在物理学方面也有一定的应用。
3、三角函数在勘测地形、勘探矿产方面发挥着重要的作用。
4、三角函数还用于通过视角来测量建筑物或山峰的高度。
常用正切值:tan225°=√2-1,tan30°=√3/3,tan45°=1,tan60°=√3,tan675°=√2+1,tan90°不存在。
参考资料来源:百度百科-正切值
用计算器或查正切表。
tana=x
a=arctanx
tan(α/2)=±√[(1-cosα)/(1+cosα)]=t
(1-cosα)/(1+cosα)=t²
1-cosα=t²(1+cosα)
∴cosα=(1-t²)/(t²+1)
tan(α/2)=(1-cosα)/sinα=t
∴sinα=(1-cosα)/t=[1-(1-t²)/(t²+1)]/t=2t/(t²+1)
同角三角函数
(1)平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
(2)积的关系:
sinα=tanαcosα cosα=cotαsinα
tanα=sinαsecα cotα=cosαcscα
secα=tanαcscα cscα=secαcotα
sin和cos自变量的取值范围均为全体实数,因为对于单位圆中与任意角的交点都有确定的横纵坐标;tan的自变量取值范围为x≠kπ+π/2(k∈Z),因为当角度为kπ+π/2(k∈Z)时任意角的边与直线x=1和直线x=-1均没有交点。sin和cos函数值的取值范围为[-1,1],因为单位圆上的点横纵坐标的取值范围为此区间;tan函数值的取值范围为全体实数,因为直线x=1和直线x=-1上的点纵坐标可为任意实数。
tan指的是正切值,它是用正弦值比上余弦值得出来的。所以如果知道一个角度的正弦值和余弦值,就可以计算出它的正切值tan。由于是正弦值比上余弦值,余弦值是分母,所以当一个角的余弦值为0是,它的正切值tan值就是不存在的。
我们比较常见的一些角度是0度,30度,45度,60度,90度还有180度。这些角度的tan值就是tan0°=0,tan30°=三分之根号三,tan45°=1,tan60°=根号三,tan90°不存在,tan180°=0。这些其实是一个常识,是需要记住的。
以斜边长为c,对边长为a,邻边长为b的直角三角形打比方,tan在数学函数中代表正切值,则tan∠1=a:b,在知道两条直角边时可用tan求∠1的正切值。接下来分享tan三角函数公式。
tan的三角函数公式
半角公式
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
倍角公式
tan2α=(2tanα)/(1-tanα^2)
降幂公式
tan^2(α)=(1-cos(2α))/(1+cos(2α))
万能公式
tanα=2tan(α/2)/[1-tan^2(α/2)]
两角和与差公式
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
和差化积公式
tanα+tanβ=sin(α+β)/cosαcosβ=tan(α+β)(1-tanαtanβ)
tanα-tanβ=sin(α-β)/cosαcosβ=tan(α-β)(1+tanαtanβ)
tan正切值在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
正切函数图像的性质
定义域:{x|x≠(π/2)+kπ,k∈Z}。
值域:R。
奇偶性:有,为奇函数。
周期性:有。
最小正周期:π。
单调性:有。
单调增区间:(-π/2+kπ,+π/2+kπ),k∈Z。
单调减区间:无。
以上就是关于tan90度等于多少全部的内容,包括:tan90度等于多少、三角函数求tan值、tan的取值范围是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!