水的紫外吸收峰

链家中介费2023-04-28  76

紫外吸收光谱法基本原理

一、电子跃迁

最常碰到的电子跃迁类型

二、发色团、助色团和吸收带

1、发色团

指具有跃迁的不饱和基团,这类基团与不含非键电子的饱和基团成键后,使化合物的最大吸收位于200nm或200nm以上,摩尔吸光系数较大(一般不低于5000),简单的生色团由双键或三键体系组成现简要讨论含生色团的不同类型有机化合物的电子吸收光谱

(1)乙烯及其衍生物

简单无环烯烃,如乙烯的跃迁的最大吸收在180nm附近,有烷基取代基时,由于碳原子的sp2杂化,最大吸收略有红移,这种现象的实质是诱导效应或超共轭效应引起的

共轭生色团

含一个以上生色团的分子的吸收带可能是彼此隔开的生色团吸收的叠加,或可能是生色团的相互作用的结果即使两个生色团为一个单键所隔开也会发生共轭作用,于是电子吸收光谱与孤立的生色团的吸收带相比,呈现出明显的变化

最简单的一个例子是1,3一丁二烯CH2=CH—CH=CH2,该分子中,两个C=C键为一个单键隔开,由于共轭作用,该分子给出的吸收光谱向低能量方向移动在共轭体系中,电子离域于至少四个原子之间;这导致了跃迁能量的下降,同时由于跃迁几率增加而使摩尔吸光系数也有所增加共轭作用对跃迁的影响相当大对乙烯(193nm)1,3—丁二烯(217nm),已三烯(258nm),辛四烯(300nm)系列来说,可以看到:随该系列每个化合物中C=C双键的逐渐增加,产生红移并伴有摩尔吸光系数的增加

(2)多炔和烯炔烃

简单三键的跃迁在175nm处有最大吸收,摩尔吸光系数约为6000

共轭炔的电子吸收带也向低能量方向移动,但是,其摩尔吸光系数则要比共轭烯的低得多例如,乙烯乙炔CH2=CH—C=CH所呈现的吸收带在1,3一丁二烯附近(=219nm)但其摩尔吸光系数仅为6500,而1,3一丁二烯的是21000当共轭体系扩展到3至6个三键时,则产生高强度吸收带,摩尔吸光系数达105数量级含双键的炔烃共轭体系,其紫外吸收光谱与多炔烃相似,在碳链长度相同的情况下,烯炔烃的吸收强度比多炔烃大,且最大吸收波长进一步红移

(3)羰基化合物

羰基化合物与二烯类、非极性不饱和化合物不同,前者的吸收带强烈地受到溶剂性质的影响,且随α取代基的增加,跃迁的吸收带逐渐红移;后者一般不受α取代基的影响在饱和有机化合物分子中含有酸、酯、内酯和内酰胺等结构单元,羰基的吸收一般在200—205nm但是,当分子中的双键与羰基共轭时,其吸收带显著增强

(4)芳烃和杂环化合物

饱和五元和六元杂环化合物在200nm以上的紫外可见区没有吸收,只有不饱和的杂环化合物即芳香杂环化合物在近紫外区有吸收这种吸收由 跃迁和跃迁产生的

(5)偶氮化合物

含—N=N—键的直链化合物产生的低强度的吸收带位于近紫外区和可见区长波处的吸收带被认为是由跃迁所致对脂肪族的叠氮化合物来说,285nm处低能量吸收带被认为是电子跃迁所致,而215nm处的吸收带则被认为是s-p→跃迁所致

2、助色团

指带有孤对电子的基团,如—OH —OR、—NH2、—NHR、—Cl、—Br—I等,它们本身不会使化合物分子产生颜色或者不能吸收大于200nm的光,但当它们与发色团相连时,能使发色团的吸收带波长(λmax)向长波方向移动,同时使吸收强度增加

(1)吸电子助色团

吸电子助色团是一类极性基团,如硝基中氧的电负性比氮大,故氮氧键是强极性键,当—NO2引入苯环分子中,产生诱导效应和共轭效应,是苯环电子密度向硝基方向移动,且环上各碳原子电子密度分布不均,分子产生极性

(2)给电子助色团

给电子助色团是指带有未成键p电子的杂原子的基团,当它引入苯环中,产生p-π共轭作用,如氨基中的氮原子含有未成键的电子,它具有推电子性质,使电子移向苯环,同样使苯环分子中各碳原子电子密度分布不均,分子产生偶极

无论是吸电子基或给电子基,当它与共轭体系相连,都导致大π键电子云流动性增大,分子中的跃迁的能级差减少,最大吸收向长波方向移动,颜色加深同时也指出助色团对苯衍生物的助色作用,不仅与基团本身的性质有关,而且与基团的数量及取代位置有关

3、红移、蓝移、增色效应和减色效应

在有机化合物中,因取代基的引入或溶剂的改变而使最大吸收波长发生移动向长波方向移动称为红移,向短波方向移动称为蓝移

由于化合物分子结构中引入取代基或受溶剂改变的影响,使吸收带强度即摩尔吸光系数增大或减小的现象称为增色效应或减色效应

三、吸收带

1、R吸收带

由化合物的跃迁产生的吸收带具有杂原子和双键的共轭基团,如C=O、-NO、-NO2、-N=N-、-C=S 等其特点是:跃迁的能量最小,处于长波方向,一般λmax在270nm以上,但跃迁几率小,吸收强度弱,一般摩尔吸光系数小于100

2、K吸收带

是由共轭体系中的跃迁产生的吸收带其特点是:吸收峰的波长比R带短,一般λmax >200nm,但跃迁几率大,吸收峰强度大一般摩尔吸光系数大于104,随着共轭体系的增大,π电子云束缚更小,引起跃迁需要的能量更小,K带吸收向长波方向移动

K吸收带是共轭分子的特征吸收带借此可判断化合物中的共轭结构这是紫外光谱中应用最多的吸收带

3、B吸收带

由苯环本身振动及闭合环状共轭双键跃迁而产生的吸收带,是芳香族的主要特征吸收带其特点是:在230-270nm呈现一宽峰,且具有精细结构,常用于识别芳香族化合物

4、E吸收带

也是芳香族化合物的特征吸收带,可以认为是苯环内三个乙烯基共轭发生的跃迁而产生的E带可分为E1和E2吸收带,都属于强吸收

红外吸收光谱图与其紫外吸收曲线比较,红外吸收光谱曲线具有如下特点:第一,峰出现的频率范围低,横坐标一般用微米(μm)或波数(cm-1)表示,第二,吸收峰数目多,图形复杂;第三,吸收强度低吸收峰出现的频率位置是由振动能级差决定,吸收峰的个数与分子振动自由度的数目有关,而吸收峰的强度则主要取决于振动过程中偶极矩的变化以及能级的跃迁概率

一、双原子分子的振动

(一)谐振子振动

将双原子看成质量为m1与m2的两个小球,把连接它们的化学键看作质量可以忽略的弹簧,那么原子在平衡位置附近的伸缩振动,可以近似看成一个简谐振动

在通常情况下,分子大都处于基态振动,一般极性分子吸收红外光主要属于基态(ν =0)到第一激发态(ν=1)之间的跃迁,即△ν=1

非极性的同核双原子分子在振动过程中,偶极矩不发生变化,△v=0,△E振=0,故无振动吸收,为非红外活性

根据红外光谱的测量数据,可以测量各种类型的化学键力常数k一般来说,单键键力常数的平均值约为5 N•cm-1,而双键和三键的键力常数分别大约是此值的二倍和三倍相反,利用这些实验得到的键力常数的平均值和方程(10-5)或(10-6),可以估算各种键型的基频吸收峰的波数例如:H-Cl的k为51 N•cm-1根据(10-6)式计算其基频吸收峰频率应为2 993 cm-1,而红外光谱实测值为28859 cm-1

化学键的力常数k越大,原子折合质量μ越小,则化学键的振动频率越高,吸收峰将出现在高波数区;相反,则出现在低波数区例如,≡C—C≡,═C═C═,—C≡C—,这三种碳—碳键的原子质量相同,但键力常数的大小顺序是:叁键>双键>单键,所以在红外光谱中,吸收峰出现的位置不同:C≡C约(2 222 cm-1)> C═C(约1 667 cm-1)>C—C(约1 429 cm-1)又如,C—C,C—N,C—O键力常数相近,原子折合质量不同,其大小顺序为C—C

不是。增强生色团的生色能力(吸收波长向长波方向移动, 且吸收强度增加),这样的基团称为助色团,通过查询烷基的相关概念得知,烷基,即饱和烃基,是烷烃分子中少掉一个氢原子而成的烃基,不属于助色团。烷基链既不是发色团也不是助色团,因此非稠环单元在使用较短烷基链时就能达到宽的吸收光谱,好的溶解性能和好的平面性能。

苯酚上的 - OH叫生色团,它的存在可使B带发生深色移。苯酚(Phenol,C6H5OH)是一种具有特殊气味的无色针状晶体,有毒,是生产某些树脂、杀菌剂、防腐剂以及药物(如阿司匹林)的重要原料。也可用于消毒外科器械和排泄物的处理,皮肤杀菌、止痒及中耳炎。熔点43℃,常温下微溶于水,易溶于有机溶剂;当温度高于65℃时,能跟水以任意比例互溶。苯酚有腐蚀性,接触后会使局部蛋白质变性,其溶液沾到皮肤上可用酒精洗涤。小部分苯酚暴露在空气中被氧气氧化为醌而呈粉红色。遇三价铁离子变紫,通常用此方法来检验苯酚。

红移(red shift)

一个天体的光谱向长波(红)端的位移叫做红移。通常认为它是多普勒效应所致,即当一个波源(光波或射电波)和一个观测者互相快速运动时所造成的波长变化。美国天文学家哈勃于1929年确认,遥远的星系均远离我们地球所在的银河系而去,同时,它们的红移随着它们的距离增大而成正比地增加。这一普遍规律称为哈勃定律,它成为星系退行速度及其和地球的距离之间的相关的基础。这就是说,一个天体发射的光所显示的红移越大,该天体的距离越远,它的退行速度也越大。红移定律已为后来的研究证实,并为认为宇宙膨胀的现代相对论宇宙学理论提供了基石。上个世纪60年代初以来,天文学家发现了类星体,它们的红移比以前观测到的最遥远的星系的红移都更大。各种各样的类星体的极大的红移使我们认为,它们均以极大的速度(即接近光速的90%)远离地球而去;还使我们设想,它们是宇宙中距离最遥远的天体。

光是由不同波长的电磁波组成的,在光谱分析中,光谱图将某一恒星发出的光划分成不同波长的光线,从而形成一条彩色带,我们称之为光谱图。恒星中的气体要吸收某些波长的光,从而在光谱图中就会形成暗的吸收线。每一种元素会产生特定的吸收线,天文学家通过研究光谱图中的吸收线,可以得知某一恒星是由哪几种元素组成的。将恒星光谱图中吸收线的位置与实验室光源下同一吸收线位置相比较,可以知道该恒星相对地球运动的情况。

蓝移

就是最大吸收波长向短波长方向。蓝移(或紫移,hypsochromic shift or blue shift)�8�1吸收峰向短波长移动。空间阻碍使共轭体系破坏,�8�5max蓝移,�8�8 max减小。

如-COOR基团,能产生紫外-可见吸收的官能团,如一个或几个不饱和基团,或不饱和杂原子基团,C=C, C=O, N=N, N=O等称为生色团(chromophore)

助色团(auxochrome):本身在200 nm以上不产生吸收,但其存在能增强生色团的生色能力(改变分子的吸收位置和增加吸收强度)的一类基团。

一般助色团为具有孤对电子的基团,如-OH, -NH2, -SH等。

含有生色团或生色团与助色团的分子在紫外可见光区有吸收并伴随分子本身电子能级的跃迁,不同官能团吸收不同波长的光。

为什么苯环上连接生色基团或助色基团会引起最大吸收波长红移

助色基团是指带有孤对电子的基团(即带有非键电子对的基团),如—OH —OR、—NH2、—NHR、—Cl、—Br、—I等。它们本身不能吸收大于200nm的光,但是当它们与生色团相连时,会使生色团的吸收峰向长波方向移动,并且增加其吸收强度。 1、使双键红移原因:双键的电子跃迁π-π,当助色基团接上后,变成n-π跃迁,能量小于π-π跃迁,所以吸收带红移。 2、使羰基蓝移原因:助色团上的n电子与羰基双键的π电子产生n-π共轭,导致π轨道的能级有所提高,但这种共轭作用并没有改变n轨道的能级,因此n-π跃迁所需的能量变大,使n-π吸收带蓝移。

以上就是关于水的紫外吸收峰全部的内容,包括:水的紫外吸收峰、烷基是助色团么、苯酚是生色团还是助色团等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3708677.html

最新回复(0)