正弦、余弦函数的周期为2π,正切函数周期为π先把所求的三角函数化成我们比较熟悉的形式,可以直接代入以下公式。
比如说可化成
y=sin(ωx+θ)+K,
则T=2π/ω;
y=cos(ωx+θ)+K,
则T=2π/ω;
y=tan(ωx+θ)+K,
则T=π/ω;
(其中ω,θ,ω均为实数)
f(x)=sin(ωx+φ)
T=2π/|ω|f(x)
=cos(ωx+φ)T
=2π/|ω|f(x)
=tan(ωx+φ)T
=π/|ω|f(x)
=cot(ωx+φ)T
=π/|ω|f(x)
=sec(ωx+φ)T
=2π/|ω|f(x)
=csc(ωx+φ)T
=2π/|ω|。
扩展资料
三角函数的周期通式的表达式:
正弦三角函数的通式:y=Asin(wx+t);余弦三角函数的通式:y=Acos(wx+t);
正切三角函数的通式:y=Atan(wx+t);余切三角函数的通式:y=Actg(wx+t)。
在w>0的条件下:A:表示三角函数的振幅;三角函数的周期T=2π/ω;三角函数的频率f=1/T:
wx+t表示三角函数的相位;t表示三角函数的初相位。
正切:在Rt△ABC中,如果锐角A确定,那么角A的对边与邻边的比值随之确定,这个比叫做角A的正切,记作tanA。
即:tanA=∠A的对边/∠A的邻边。
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
扩展资料:
正切函数图像的性质:
定义域:{x|x≠(π/2)+kπ,k∈Z}
值域:R
奇偶性:有,为奇函数
周期性:有
最小正周期:kπ,k∈Z
单调性:有
单调增区间:(-π/2+kπ,+π/2+kπ),k∈Z
单调减区间:无
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:tan(2kπ+α)=tanα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:tan(π+α)=tanα
公式三:
任意角α与 -α的三角函数值之间的关系: tan(-α)=-tanα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:tan(π-α)=-tanα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:tan(2π-α)=-tanα
参考资料来源:百度百科——正切
1、定义域:{x|x≠(π/2)+kπ,k∈Z}。
2、值域:实数集R。
3、奇偶性:奇函数。
4、单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数。
5、周期性:最小正周期π(可用T=π/|ω|来求)。
6、最值:无最大值与最小值。
7、零点:kπ,k∈Z。
8、对称性:无轴对称:无对称轴中心对称:关于点(kπ/2+π/2,0)对称(k∈Z)。
9、奇偶性:由tan(-x)=-tan(x),知正切函数是奇函数,它的图象关于原点呈中心对称。
10、图像(如图所示)实际上,正切曲线除了原点是它的对称中心以外,所有x=(n/2)π (n∈Z) 都是它的对称中心。
扩展资料:
在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
法兰西斯·韦达(François Viète)曾在他对三角法研究的第一本著作《应用于三角形的数学法则》中提出正切定理。
现代的中学课本已经甚少提及,例如由于中华人民共和国曾经对前苏联和其教育学的批判,在1966年至1977年间曾经将正切定理删除出中学数学教材。不过在没有计算机的辅助求解三角形时,这定理可比余弦定理更容易利用对数来运算投影等问题。
正切定理: (a + b) / (a - b) = tan((α+β)/2) / tan((α-β)/2)
tanA·tanB·tan(A+B)+tanA+tanB-tan(A+B)=0
高等代数中三角函数的指数表示(由泰勒级数易得):
sinx=[e^(ix)-e^(-ix)]/(2i)
cosx=[e^(ix)+e^(-ix)]/2
tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
tanA·tanB=1
参考资料:
以上就是关于三角函数的周期怎么求全部的内容,包括:三角函数的周期怎么求、正切的定义、正切函数的性质等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!