若干个单项式的和组成的式子叫做多项式,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。
上图等式右边都是多项式
a+常数是包含常数的特殊多项式
多项式区别于单项式,是由几个单项式相加或相减连接而成的式子。如a是单项式,b也是单项式,而a+b就是多项式了,因为它们有加号相连。
二次多项式就是一个多项式中,其中包含着最高次项是2次的单项式,这个单项式则是二次多项式,如a×a(a的二次方)+b+c就是二次多项式,其中单项式a是最高的2次项,所以如此。
平方根多项式我没听说过,大概是指多项式间有含平方根的单项式,或是多项式整体被平方根括起来了。
1、在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。
2、对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。
多项式这个概念,对于初一来说是个很重要的知识点,应该从多项式的定义、多项式的项、多项式的次数、多项式的项数这几个角度把它掌握扎实了,解起题来才能得心应手。
多项式的定义其实,理解了单项式,那么多项式就更好理解了。
几个单项式的和就叫做多项式。是不是很好理解哈。
从多项式的概念中不难看出,多项式是由单项式组成的,多项式中的单项式之间的关系是“和”的关系。
概念是判断的唯一标准。那么,我们拿着单项式和多项式的概念,对图中的3a和3+a进行区分:
3a表示的是一个数字与一个字母的乘积,符合单项式的概念,显然3a就是个单项式。而3+b中呢,单独的一个数字3是单项式,单独的一个字母b是单项式,加号“+”表示这两个单项式的关系是“和”关系,所以满足多项式的概念,所以3+b是个多项式。
在多项式中,有几个定义需要我们搞清楚:
多项式的项在多项式中,每个单项式都叫做多项式的项。比如3+a这个多项式中,3和a都叫做该多项式的项。
多项式的次数:多项式的次数,就是多项式中次数最高的单项式的次数。换句话说,多项式的次数是由多项式中次数最高的单项式决定的。只要理解了单项式的次数,多项式的次数就很好理解了。比如3ab+6d这个多项式的次数就是“2”,因为在这个多项式中,单项式3ab的次数最高,是2,同时它也是多项式的次数。
多项式的项数:这个就更好理解了。就是多项式中有几个单项式,那就是多项式的项数。比如这个多项式6+ab+c,因为该多项式中有3个单项式,所以它的项数是3
多项式就讲到这里,为了让大家更好地理解多项式的概念,我们出几道题,如下图所示。有兴趣的话可以做一做。我们将在下一课中公布答案~
到这里,我们也就做到了从多项式的定义、项、次数及项数四个角度去理解多项式,自然也就对多项式概念看得明明白白了……
在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。
1、在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。
2、把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
扩展资料:
多项式因式分解的原则:
1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。
2、分解因式的结果必须是以乘积的形式表示。
3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;
5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;
6、括号内的首项系数一般为正;
7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);
8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。
口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
参考资料来源:百度百科——因式分解
参考资料来源:百度百科——多项式
以上就是关于什么叫多项式全部的内容,包括:什么叫多项式、多项式是什么、多项式的概念是什么 多项式是什么意思等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!