根据平行四边形判定方法找条件,
具体方法可以是:
1两组对边分别平行的四边形是平行四边形;
2一组对边平行且相等的四边形是平行四边形;
3两组对边分别相等的四边形是平行四边形;
4对角线互相平分的四边形是平行四边形;
5两组对角分别相等的四边形是平行四边形;
6所有邻角(每一组邻角)都互补的四边形是平行四边形
平行四边形的判定6种方法如下:
1、证明两组对边分别平行。
2、证明两组对边分别相等。
3、证明一组对边平行且相等。
4、证明对角线互相平分。
5、证明两组对角分别相等。
6、证明一个角和相邻的两个角都互补。
两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。
只有四条哦,可以就选我吧!
一,定义:
两组对边分别平行的四边形叫做平行四边形。
1、平行四边形属于平面图形。
2、平行四边形属于四边形。
3、平行四边形属于中心对称图形。
二,性质:
(矩形、菱形、正方形都是特殊的平行四边形。)
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”)
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”)
(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(7)平行四边形的面积等于底和高的积。(可视为矩形。)
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点
(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
三,判定:
1、两组对边分别平行的四边形是平行四边形(定义判定法);
2、一组对边平行且相等的四边形是平行四边形;
3、两组对边分别相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形(两组对边平行判定);
5、对角线互相平分的四边形是平行四边形。
补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。
扩展资料:
1,平行四边形的相关计算:
(1)平行四边形的面积公式:底×高(可运用割补法,推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah。
(2)平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=absinα。
2、平行四边形周长:四边之和。可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2(a+b)。
参考资料:
平行四边形的性质与判定如下:
平行四边形性质:两组对边平行且相等;两组对角大小相等;相邻的两个角互补;对角线互相平分;对干平面上任何一点,都存在一条能将平行四边形平分为两个面积相等图形、并穿过该点的线;四边边长的平方和等于两条对角线的平方和。
平行四边形性质定理:在同一个二维平面内,由两组平行线段组成的闭合图形,称为平行四边形,其边与边、角与角、对角线之间存在着各种各样的关系,即是平行四边形性质定理。
平行四边形判定定理:定义法:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
平行四边形恒等式:平行四边形恒等式是描述平行四边形的几何特性的一个恒等式。它等价于三角形的中线定理。在一般的赋范内积空间(也就是定义了长度和角度的空间)中,也有类似的结果。这个等式的最简单的情形是在普通的平面上:一个平行四边形的两条对角线长度的平方和,等于它四边长度的平方和。
1 两组对边分别平行;
2 两组对边分别相等;
3 一组对边平行且相等;
4 对角线互相平分;
5 两组对角分别相等
以上五个条件均可判定一个四边形是平行四边形,都是平行四边形的判定定理
希望种能帮到你!
遇到题目不能盲目的去做,要有一定的过程和思考方法。
(一)平行四边形的5种判定方法:
1与边有关的判定方法:
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
2与角有关的判定方法:
两组对角分别相等的四边形是平行四边形;
3与对角线有关的判定方法:
对角线互相平分的四边形是平行四边形;
(二)思考方法:根据5种判定方法,分析题目中的已知条件,看看已知条件适合哪一种判定方法,然后根据找好的判定方法这个目标去分析题目,解决问题。
以上就是关于判定一个四边形是平行四边形应具备什么条件全部的内容,包括:判定一个四边形是平行四边形应具备什么条件、平行四边形的判定6种方法、平行四边形的判定,有五条,分别是等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!