圆的切线的性质定理


圆的切线的性质定理:圆的切线垂直于过其切点的半径;经过半径的非圆心一端,并且垂直于这条半径的直线,就是这个圆的一条切线。圆的切线垂直于经过切点的半径。

圆的切线

切线的性质定理

圆的切线垂直于过其切点的半径;经过半径的非圆心一端,并且垂直于这条半径的直线,就是这个圆的一条切线。

切线的性质定理的推论

(1)经过切点垂直于切线的线段必是此圆的直径或半径。(2)圆的切线垂直于经过切点的半径。

切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。

线段DA垂直于直线AB

BA为圆o的切线

切线的性质定理:圆的切线垂直于经过切点的半径

推论1:经过圆心且垂直于切线的直线必经过切点.

推论2:经过切点且垂直于切线的直线必经过圆心.

关于圆的定理

1、切线定理

垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。

切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

2、切线长定理

从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

3、切割线定理

圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC^2=pA·pB

设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB

4、割线定理

从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

一条直线与一条弧线有两个公共点,我们就说这条直线是这条曲线的割线。

5、垂弦定理

垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

6、弦切角定理

弦切角等于对应的圆周角。(弦切角就是切线与弦所夹的角)

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理 相交两圆的连心线垂直平分两圆的公弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

证明切线的方法有用判定定理和证明从圆心到直线的距离和圆的半径相等两种。

第一个,用判定定理,这是证明切线最多见的方法,也就是如果直线和圆之间有交点,连接交点和圆心,得出半径,只要证明这条半径和这条直线是垂直的就行了。

第二个,当不确定直线和圆的交点个数或是交点所处的位置的时候,能够通过圆心作出直线的垂线,然后证明从圆心到直线的距离和圆的半径相等就行了。

在几何中,切线是指一条刚好碰触到曲线上某个点的直线。当切线经过曲线上的某个点,也就是切点的时候,切线的方向和曲线上这个点的方向一样。在平面几何里面,把和圆只有一个公共交点的直线称作圆的切线。

在高等数学中,对一个函数而言,假设函数的某个地方有导数,那么这里的导数就是经过这里的切线的斜率,这个点和斜率所构成的直线就是这个函数的一个切线。

切线的性质定理是:圆的切线垂直于经过这个切点的圆的半径,经过圆的半径的不是圆心的一端,而且垂直于这条半径的直线,就是这个圆的一条切线。

切线的判定定理是:一条直线如果和一个圆有交点,而且连接交点和圆心的直线和这条直线是垂直的关系,那么这条直线就是圆的切线。

切线的判定和性质

切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

几何语言:∵l ⊥OA,点A在⊙O上

∴直线l是⊙O的切线(切线判定定理)

切线的性质定理 圆的切线垂直于经过切点半径

几何语言:∵OA是⊙O的半径,直线l切⊙O于点A

∴l ⊥OA(切线性质定理)

推论1 经过圆心且垂直于切线的直径必经过切点

推论2 经过切点且垂直于切线的直线必经过圆心

切线长定理

定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

几何语言:∵弦PB、PD切⊙O于A、C两点

∴PA=PC,∠APO=∠CPO(切线长定理)

弦切角

弦切角定理 弦切角等于它所夹的弧对的圆周角

几何语言:∵∠BCN所夹的是 ,∠A所对的是

∴∠BCN=∠A

推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

几何语言:∵∠BCN所夹的是 ,∠ACM所对的是 ,=

∴∠BCN=∠ACM

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

4.弦切角概念:顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:

(1)顶点在圆上,即角的顶点是圆的一条切线的切点;

(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;

(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线.

它们是判断一个角是否为弦切角的标准,三者缺一不可,比如下图中 均不是弦切角.

(4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.

弦切角定理:弦切角等于它所夹的孤对的圆周角.它是圆中证明角相等的重要定理之一.

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

第一个定理,就是切线的性质定理,这个定理是很简单的,而且理解不困难,只要记住:”过圆心“,”过切点“和”互相垂直“这三条谁知二推一就够了。

第二个定理,是切线的判定定理,切线的判定是中考中常经常考的内容,切线判定主要有三种方式:定义法、距离法及定理法。其中最常用的是定理法,其次是距离法,定义法就很少用到了。

这里面,在进行切线判定时,其实只需要记住:"有交点,连半径,证垂直; 无交点,作垂直,正半径"就可以了。也就是说,切线的判定主要就这两种题型,即题目中告诉直线与圆有交点和直线与圆无交点。

第三个定理,是切线长定理。在这个定理中,同一交点所形成的两条切线长时相等的,并且此交点与圆心的连线是两条切线长的夹角的角平分线,所以说是有一对相等的角的。在做相应的练习时,同学们要条件反射式的看到切线长,就要知道有两组相等,即线相等及角相等。

圆的弦切角定理

弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数。与圆相切的直线,同圆内与圆相交的弦相交所形成的夹角叫做弦切角。

以上就是关于圆的切线的性质定理全部的内容,包括:圆的切线的性质定理、圆的切线的判定定理这一课的易错点是什么、如何证明切线等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3687647.html

最新回复(0)