怎么求曲线的切线方程和斜率
解:
以此题为例:f(x)=x^3
x^2-2x,过切点(1,f(1)),求直线方程
首先对它求导,f(x)的导=3x^2
2x-2,将横坐标1带入导中(切点的导数值就为直线的斜率),得K=3,又因为过(1,f(1)),所以f(1)=0设直线方程为y=kx
b,已知k=3,且过(1,0)这一点,所以直线方程为y=3x
b…
比如s-t图像,大家都知道斜率表示速度,但是切线斜率表示瞬时速度,割线斜率却表示平均速度,原因是瞬时速度和平均速度的表达式其实不一样。平均速度v=s/t,其中t是一段时间;但瞬时速度v=s/t中的t是趋于0的,也就是瞬时速度的表达式应该是v=△s/△t,其中△t趋于0(你可以想象下曲线上取一个点两端一小段趋于0的曲线求斜率,这斜率其实就是曲线上这个点的切线斜率)。
所以看伏安特性曲线,斜率表示电阻,电阻的公式是R=U/I,而不是R=△U/△I,所以伏安特性曲线中得出电阻自然要看割线的斜率。
总的来说,就是公式中,分母如果要求趋于0的,那肯定是切线的斜率;如果分母是一段长度不趋于0,那就是割线的斜率。
切线与法线的关系公式:切线的斜率乘以法线的斜率=-1。即斜率k=tanθ,θ倾斜角k1k2=tanθ*tan(θ+90°)=tanθ*(-cotθ)=-1。
用导数表示曲线y=f(x)在点M(x0,y0)处的切线方程为:y-f(x0)=f'(x0)(x-x0)法线方程为:y-f(x0)=(-1/f'(x0))(x-x0)。
根据方程求解能够免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。
方程一定是等式,可是等式能够有别的的,例如上面举的1+1=2,100×100=10000,都是等式,显然等式的范围大一点。
法线方程导数的求导法则:
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。
2、两个函数的乘积的导函数:一导乘二+一乘二导。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。
4、如果有复合函数,则用链式法则求导。
百度百科-法线
导数切线斜率公式:两点表示切线的斜率k=(y1-y2)/(x1-x2)。导数的几何意义是该函数曲线在这一点上的切线斜率。 扩展资料
切线的斜率怎么求
方法1:用导数求。
第一先求原函数的导函数,第二把切点的'横标代入导函数中得到的值就是原函数的图像在该点出切线的斜率。
方法2:有两点表示切线的斜率k=(y1-y2)/(x1-x2)。
方法3:设出切线方程y=kx+b与函数的曲线方程联立消y,得到关于x的一元二次方程,由Δ=0,解k。
导数切线方程公式
先算出来导数f'(x),导数的实质就是曲线的斜率,比如函数上存在一点(ab),且该点的导数f'(a)=c。那么说明在(ab)点的切线斜率k=c,假设这条切线方程为y=mx+n,那么m=k=c,且ac+n=b,所以y=cx+b-ac。
公式:求出的导数值作为斜率k,再用原来的点(x0,y0),切线方程就是(y-b)=k(x-a)。
答:切线斜率等于切点所在的函数在切点处的导数(切线斜率必须存在)
比如:点P(Xo,yo)在曲线y=f(x)上,f`(x)为函数y=f(x)导函数,k为过点P的切线的斜率,
则k=f`(Xo)
以上就是关于怎么求曲线的切线方程和斜率全部的内容,包括:怎么求曲线的切线方程和斜率、如何比较割线斜率和切线斜率大小、法线与切线的斜率关系公式是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!