函数的定义域怎么求

克孜勒2023-04-25  17

求函数的定义域的方法如下:

1、整式的定义域为R。整式可以分为单项式还有多项式,单项式比如y=4x,多项式比如y=4x+1。这时候无论是单项式还是多项式,定义域均为{x|x∈R},就是x可以等于所有实数。

2、分式的定义域是分母不等于0。例如y=1/(x-1),这时候的定义域只需要求让分母不等于即可,即x-1≠0,定义域为{x|x≠1}。

3、偶数次方根定义域是被开方数≥0。例如根号下x-3,这时候定义域就是让x-3≥0,求出来定义域为{x|x≥3}。

4、奇数次方根定义域是R。例如三次根号下x-3,定义域就是{x|x∈R}。

5、指数函数定义域为R。比如y=3^x,定义域为{x|x∈R}。

6、对数函数定义域为真数>0。比如log以3为底(x-1)的对数,让x-1>0,即定义域为{x|x>1}。

7、幂函数定义域是底数≠0。比如y=(x-1)^2,让x-1≠0,即定义域为{x|x≠1}。

8、三角函数中正弦余弦定义域为R,正切函数定义域为x≠π/2+kπ。这时候求定义域画个图就可以看出来了,只要记住三角函数图像,即可求出定义域。

定义域表示方法有不等式、区间、集合等三种方法。

y=[√(3-x)]/[lg(x-1)] 的定义域可表示为:1)x≤1;2)x∈(-∞,1];3){x|x≤1}。

设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。

扩展资料

定义域与不等式和方程都存在着联系,令函数值等于零,从几何角度看,对应的自变量是图像与X轴交点;从代数角度看,对应的自变量是方程的解。

另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“ >”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。

(1)定义域一定是x的范围,注意力应放在x上,不管已知定义域,还是求定义域,都是指x范围

如f(3x+1)的定义域为[1,2]是指括号内3x+1中的x的范围是[1,2]

(2)求定义域的方法是:凡是f后面括号内的范围是相同的,不管括号内是什么,通过这个求x范围

如f(3x+1)的定义域为[1,2]求f(x)定义域

由条件可得整个括号内的范围为[4,7]

而f(x)中,括号内只有x,故定义域即为[4,7]

再如f(3x+1)的定义域为[1,2]求f(1-2x)定义域

由上可知括号内范围[4,7]

故1-2x的范围也是[4,7]

解不等式4≤1-2x≤7得出的x范围即为所求的定义域

函数定义域的求法:(1)分式的分母不能为零;(2)偶次方根的内部必须非负即大于等于零;(3)对数的真数为正,对数的底数大于零且不等于1;(4)x 0 中,x≠0。

求解方法

组合函数

由若干个基本函数通过四则运算形成的函数,其定义域为使得每一部分都有意义的公共部分。

原则:(1)分式的分母不能为零;(2)偶次方根的内部必须非负即大于等于零;(3)对数的真数为正,对数的底数大于零且不等于1;(4)x 0 中,x≠0。

复合函数

若y=发(u),u=g(x),则y=f[g(x)]就叫做f和g的复合函数。其中y=f(U)叫做外函数,u=g(x)叫做内函数。

例如:(1)已知y=f(x)的定义域D 1 ,求y=f[g(x)]的定义域D 2 。

解法:解不等式:g(x)∈D 1

(2)已知y=f[g(x)]的定义域D 1 ,求y=f(x)的定义域D 2 。

解法:令u=g(x),x∈D 1 ,求函数g(x)的值域。

求函数定义域一般原则

①如果为整式,其定义域为实数集;

②如果为分时,其定义域是是分母不为0的实数集合;

③如果是二次根式(偶次根式),其定义域是使根号内的式子不小于0的实数集合;

④如果是由以上几个部分的数学式子构成的,其定义域是使各个式子都有意义的实数集合。

1.观察法bai

用于简单的解析式。

y=1-√x≤1,值域du(-∞,1]

y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).

2.配方zhi法

多用于二次dao(型)函数。

y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1,+∞)

y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)

3.换元法

多用于复合型函数。

通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。

特别注意中间变量(新量)的变化范围。

y=-x+2√(x-1)+2

令t=√(x-1),

则t≤0,x=t^2+1.

y=-t^2+2t+1=-(t-1)^2+2≤1,值域(-∞,1].

4.不等式法

用不等式的基本性质,也是求值域的常用方法。

y=(e^x+1)/(e^x-1), (0<x<1)

0<x<1,

1<e^x<e, 0<e^x-1<e-1,

1/(e^x-1)>1/(e-1),

y=1+2/(e^x-1)>1+2/(e-1)值域(1+2/(e-1),+∞)

5.最值法

如果函数f(x)存在最大值M和最小值m.那么值域为[m,M].

因此,求值域的方法与求最值的方法是相通的.

6.反函数法

有的又叫反解法.

函数和它的反函数的定义域与值域互换.

如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.

7.

单调性法

若f(x)在定义域[a,

b]上是增函数,则值域为[f(a),

f(b)]减函数则值域为

[f(b),

f(a)]

8.

要求值域就要先求定义域如果是抛物线,还要看看顶点是否在定义域内。

扩展资料:

定义域是函数y=f(x)中的自变量x的范围。

求函数的定义域需要从这几个方面入手:

(1),分母不为零

(2),偶次根式的被开方数非负。

(3),对数中的真数部分大于0。

(4),指数、对数的底数大于0,且不等于1

(5),y=tanx中x≠kπ+π/2,

y=cotx中x≠kπ等等。值域是函数y=f(x)中y的取值范围。

常用的求值域的方法:

(1)化归法;

(2)图象法(数形结合),

(3)函数单调性法,

(4)配方法,

(5)换元法,

(6)反函数法(逆求法),

(7)判别式法,

(8)复合函数法,

(9)三角代换法,

(10)基本不等式法,

(11)分离常数法等。

求函数定义域的方法如下:

①整式:若y=f(x)为整式,则函数的定义域是实数集R

②分式:若y=f(x)为分式,则函数的定义域为使分母不为0的实数集.

③偶次根式:若y=f(x)为偶次根式,则函数的定义域为被开方数非负的实数集.

④X0(x≠0)

⑤对数函数真数大于零

⑥几部分组成:若y=f(x)是由几部分数学式子的和、差、积、商组成的形式,定义域是使各部分都有意义的集合的交集.

⑦实际问题:若y=f(x)是由实际问题确定的,其定义域要受实际问题的约束.

函数的定义域是我们上了高中后接触到的新的名词,其实相关知识我们早有接触,其实它就是我们之前学习函数中自变量x的取值范围,到了高中我们将这个取值范围定义为函数的定义域。

那如何理解定义域呢?数学总是抽象难理解的,函数更上如此,所以相当一部分同学听到函数就头皮发麻。

所以为了了解抽象的定义域我先从具体的事例开始说明。比如人类的活动区域可以视为一个定义域,具体指地球上的陆地部分(有人会觉得我们有时候会去水里游泳呀,等等不一定一直在陆地,emmm我要讲的一个意思是人类是陆生动物,日常生活都在陆地上进行,如果长时间待在水里将死亡),那么鸟类活动区域的定义域就是陆地与天空,相比与人类它的定义域更大

函数定义域:数学名词,是函数的三要素(定义域、值域、对应法则)之一,对应法则的作用对象。指函数自变量的取值范围,即对于两个存在函数对应关系的非空集合D、M,集合D中的任意一个数,在集合M中都有且仅有一个确定的数与之对应,则集合D称为函数定义域。

求函数定义域的方法:

1、分式的分母不等于零。

2、偶次方根的被开方数大于等于零。

3、对数的真数大于零。

4、指数函数和对数函数的底数大于零且不等于1。

5、三角函数正切函数中;余切函数中。

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

常见题型。

常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题。

如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数等等。

以上就是关于函数的定义域怎么求全部的内容,包括:函数的定义域怎么求、定义域是如何求出来的、如何求函数的定义域等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3667392.html

最新回复(0)