什么是分子轨道理论

什么是单项式2023-04-25  25

分子轨道理论(MO理论)是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的认知,即认为分子中的电子围绕整个分子运动。1932年,美国化学家 Robert S Mulliken和德国化学家Friedrich Hund 提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即MO法。该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。目前,该理论在现代共价键理论中占有很重要的地位。

原子轨道在组成分子轨道时候,必须满足下面三条原则才能有效的组成分子轨道。

(1)对称性匹配原则:两个原子轨道的对称性匹配时候它们才能够组成分子轨道。那么什么样子的原子轨道才是对称性匹配呢?可将两个原子轨道的角度分布图进行两种对称性操作,即旋转和反映操作,“旋转”是绕键轴(以x轴为键轴)旋转180度,“反映”是包含键轴的某一个平面(xy或者xz)进行反映,即是照镜子。

若操作以后它们的空间位置,形状以及波瓣符号均没有发生改变称为旋转或者反应操作对称,若有改变称为反对称。两个原子轨道“旋转”“反映”两种对称性操作均为对称或者反对称就称为两者“对称性匹配”。

s和Px原子轨道轨道对于旋转以及反应两个操作均为对称;Px以及Pz原子轨道对于旋转以及反映两个操作均是反对称,所以它们都是属于对称性匹配,可以组成分子轨道,同理我们还可以得到Py与Py,Pz与Pz原子轨道也是对称性匹配。

(2)能量近似原则:当参与组成分子轨道的原子轨道之间能量相差太大时候,不能有效的组成分子轨道。原子轨道之间的能量相差越小,组成的分子轨道成键能力越强,称为“能量近似原则”。

(3)最大重叠原则:原子轨道发生重叠时,在可能的范围内重叠程度越大,形成的成键轨道能量下降就越多,成键效果就越强,即形成的化学键越牢固,这就叫最大重叠原则。例如两个原子轨道各沿x轴方向相互接近时,由于Py和Px轨道没有重叠区域,所以不能组成分子轨道;s与s以及Px与Px之间有最大重叠区域,可以组成分子轨道;而s和Px轨道之间只要能量相近也可以组成分子轨道。 当形成了分子时,原来处于分子的各个原子轨道上的电子将按照泡利不相容原理,能量最低原理,Hund规则这三个原则进入分子轨道。这点和电子填充原子轨道规则完全相同。

分子轨道理论

价键理论着眼于成键原子间最外层轨道中未成对的电子在形成化学键时的贡献, 能成功地解释了共价分子的空间构型,因而得到了广泛的应用 但如能考虑成键原子的内层电子在成键时贡献, 显然更符合成键的实际情况1932年,美国化学家 Mulliken RS和德国化学家Hund F 提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即 MO法该理论注意了分子的整体性,因此较好地说明了多原子分子的结构 目前, 该理论在现代共价键理论中占有很重要的地位

分子轨道理论的要点:

1原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分子空间范围内运动在分子中电子的空间运动状态可用相应的分子轨道波函数ψ(称为分子轨道)来描述分子轨道和原子轨道的主要区别在于:(1)在原子中,电子的运动只受 1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统(2)原子轨道的名称用s、p、d…符号表示,而分子轨道的名称则相应地用σ、π、δ…符号表示

2分子轨道可以由分子中原子轨道波函数的线性组合(linear combination of atomic orbitals,LCAO)而得到几个原子轨道可组合成几个分子轨道,其中有一半分子轨道分别由正负符号相同的两个原子轨道叠加而成,两核间电子的概率密度增大,其能量较原来的原子轨道能量低,有利于成键,称为成键分子轨道(bonding molecular orbital),如σ、π轨道;另一半分子轨道分别由正负符号不同的两个原子轨道叠加而成,两核间电子的概率密度很小,其能量较原来的原子轨道能量高,不利于成键,称为反键分子轨道(antibonding molecular orbital),如 σ、π 轨道

3为了有效地组合成分子轨道,要求成键的各原子轨道必须符合下述三条原则, 也就是组成分子轨道三原则:

(1)对称性匹配原则

只有对称性匹配的原子轨道才能组合成分子轨道,这称为对称性匹配原则

原子轨道有s、p、d等各种类型,从它们的角度分布函数的几何图形可以看出,它们对于某些点、线、面等有着不同的空间对称性对称性是否匹配,可根据两个原子轨道的角度分布图中波瓣的正、负号对于键轴(设为x轴)或对于含键轴的某一平面的对称性决定例如 图1中的(a)、(b),进行线性组合的原子轨道分别对于x轴呈园柱形对称,均为对称性匹配;又如图 2(d)和(e) 中,参加组合的原子轨道分别对于xy平面呈反对称,它们也是对称性匹配的,均可组合成分子轨道;可是图2(f)、(g)中,参加组合的两个原子轨道对于xy平面一个呈对称而另一个呈反对称,则二者对称性不匹配,不能组合成分子轨道

图9-10 原子轨道对称性匹配成键

符合对称性匹配原则的几种简单的原子轨道组合是,(对 x轴) s-s、s-px 、px-px 组成σ分子轨道;(对 xy平面)py-py 、pz-pz 组成π分子轨道对称性匹配的两原子轨道组合成分子轨道时,因波瓣符号的异同,有两种组合方式:波瓣符号相同(即++重叠或--重叠)的两原子轨道组合成成键分子轨道;波瓣符号相反(即+-重叠)的两原子轨道组合成反键分子轨道图9-11是对称性匹配的两个原子轨道组合成分子轨道的示意图

对称性匹配的两个原子轨道组合成分子轨道示意图

(2)能量近似原则

在对称性匹配的原子轨道中,只有能量相近的原子轨道才能组合成有效的分子轨道,而且能量愈相近愈好,这称为能量近似原则

(3)轨道最大重叠原则

对称性匹配的两个原子轨道进行线性组合时,其重叠程度愈大,则组合成的分子轨道的能量愈低,所形成的化学键愈牢固,这称为轨道最大重叠原则在上述三条原则中,对称性匹配原则是首要的,它决定原子轨道有无组合成分子轨道的可能性能量近似原则和轨道最大重叠原则是在符合对称性匹配原则的前提下,决定分子轨道组合效率的问题

4电子在分子轨道中的排布也遵守Pauli不相容原理、能量最低原理和Hund规则具体排布时,应先知道分子轨道的能级顺序目前这个顺序主要借助于分子光谱实验来确定

5在分子轨道理论中,用键级(bond order)表示键的牢固程度键级的定义是:

键级 = (成键轨道上的电子数 - 反键轨道上的电子数)/2

键级也可以是分数一般说来,键级愈高,键愈稳定;键级为零,则表明原子不可能结合成分子

见百度百科

以上就是关于什么是分子轨道理论全部的内容,包括:什么是分子轨道理论、分子轨道的分子轨道详解、那位高手可以讲解一下多原子的分子的分子轨道理论等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3666278.html

最新回复(0)