几率和机率都是正确的写法,两者没有区别,一样的意思。
几率和机率均指概率,它反映随机事件出现的可能性(likelihood)大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。
例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。
扩展资料:
经过大量反复试验,常有m/n越来越接近于某个确定的常数(此论断证明详见伯努利大数定律)。该常数即为事件A出现的概率,常用P (A) 表示。
历史起源:
第一个系统地推算概率的人是16世纪的卡尔达诺。记载在他的著作《Liber de Ludo Aleae》中。书中关于概率的内容是由Gould从拉丁文翻译出来的。
卡尔达诺的数学著作中有很多给赌徒的建议。这些建议都写成短文。然而,首次提出系统研究概率的是在帕斯卡和费马来往的一系列信件中。
这些通信最初是由帕斯卡提出的,他想找费马请教几个关于由Chevvalier de Mere提出的问题。Chevvalier de Mere是一知名作家,路易十四宫廷的显要,也是一名狂热的赌徒。问题主要是两个:掷骰子问题和比赛奖金分配问题。
几率和机率没有区别,都是概率的基本概念。几率和机率没有区别,都是概率的基本概念。几率为正统写法,后来因为“机率”用的多了而转正,现两种写法都可。这是一对异形词,是同一个词的两种不同写法,目前都可使用。
它们的意思是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1该事件更可能发生;越接近0则该事件更不可能发生。另在统计学中,几率的定义是:事件发生的概率与该事件不发生的概率的比值。如果发生的概率是p,那么该事件发生的几率是p/(1-p)。