汽车传感器分类有几种类型

汽车传感器分类有几种类型,第1张

太平洋汽车网汽车传感器有5类,速度类的,如时速表、转速表。温度类的,如水温表、环境温度表。压力类的,如机油压力表、胎压指示、海拔高度表。电器类的,如电池充放电表。液量类的,如油量表。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求,通常由敏感元件和转换元件组成。

车用传感器是汽车计算机系统的输入装置,它把汽车运行中各种工况信息,如车速、各种介质的温度、发动机运转工况等,转化成电讯号输给计算机,以便发动机处于最佳工作状态。一旦某个传感器失灵,对应的装置工作就会不正常,甚至不工作,因此传感器在汽车上的作用是极为重要的。(图/文/摄:太平洋汽车网陈敏2)

传感器细分的话,分类很多,这是参考维库仪器仪表网上的分类:光电/光敏传感器 电磁/磁敏传感器 霍尔/电流(压)传感器 超声波/声敏传感器 光纤/激光传感器 测距/距离传感器 视觉/图像传感器 微波传感器 光栅/光幕传感器 压力/称重/力(敏)传感器 力矩/扭矩传感器 温度/湿度/温湿度传感器 汽车传感器 速度/加速度传感器 气体/气敏/烟雾传感器 料位/液位传感器 振动/接近/位移传感器 流量传感器 风速/风向/风量传感器 角度/倾角传感器 红(紫)外/射线/辐射传感器 色标/颜色传感器 火焰(警)传感器 生物传感器 压电传感器 电量传感器 旋转传感器 区域传感器 高压传感器 压差传感器 长度传感器 电阻/电容/电感传感器 分析传感器 电导率传感器 离子传感器 硬度传感器 密度传感器 惯性传感器 MEMS传感器 无线传感器 智能传感器 金属氧化传感器 陀螺仪 其他传感器。

目前市面上的传感器有很多类型,包括温度传感器,湿度传感器,气体传感器等。

温度传感芯片系列为高集成度的数字模拟混合信号的智能传感芯片,感温原理基于半导体PN节温度与带隙电压的特性关系,经过小信号放大、模数转换、数字校准补偿、输出数字温度,具有精度高、一致性好、寿命长、功耗低、可编程配置灵活等优点。

每颗芯片都有唯一的64位ID序列号,并在出厂前根据温度误差特性进行校准系数的拟合,芯片内部自动进行补偿计算。 为了简化系统应用,芯片的ID搜索、测温数据内存访问、功能配置等均基于数字单总线协议指令,上位机微处理器只需要一个GPIO端口便可进行读写访问。单总线通信接口通过共用一根数据总线来实现了多节点传感采集与组网的低成本方案,传输距离远、支持节点数多,便于空间分布式传感组网。芯片内置非易失性EEPROM存储单元,用于保存芯片ID号、高低温报警阈值、温度校准修正值以及用户自定义信息,如传感器节点编号、位置信息等。其中以敏源传感科技的温度芯片为代表的被诸多厂商虽采用。

ABS传感器就是一个转速传感器,转速传感器按类型分有磁电式、霍尔式、光电式这三种,但是应用在ABS传感器上的,通常就是磁电式的。

磁电式的ABS传感器按结构分为,分体式和一体式,分体式就是传感器和齿圈是分开的(比如大众车型)。一体式就是传感器和齿圈是一个整体的(比如通用车型)。

在种类繁多的传感器中,常见的有∶

1

进气压力传感器:反映进气歧管内的绝对压力大小的变化,是向ECU(发动机电控单元)提供计算喷油持续时间的基准信号;

2

空气流量计:测量发动机吸入的空气量,提供给ECU作为喷油时间的基准信号;

3

节气门位置传感器:测量节气门打开的角度,提供给ECU作为断油、控制燃油/空气比、点火提前角修正的基准信号;

4

曲轴位置传感器:检测曲轴及发动机转速,提供给ECU作为确定点火正时及工作顺序的基准信号;

5

氧传感器:检测排气中的氧浓度,提供给ECU作为控制燃油/空气比在最佳值(理论值)附近的的基准信号;

6

进气温度传感器:检测进气温度,提供给ECU作为计算空气密度的依据;

7

冷却液温度传感器:检测冷却液的温度,向ECU提供发动机温度信息;

8

爆震传感器:安装在缸体上专门检测发动机的爆燃状况,提供给ECU根据信号调整点火提前角。

9

这些传感器主要应用在变速器、方向器、悬架和ABS上。

10

变速器:有车速传感器、温度传感器、轴转速传感器、压力传感器等,方向器有转角传感器、转矩传感器、液压传感器;

11

悬架:有车速传感器、加速度传感器、车身高度传感器、侧倾角传感器、转角传感器等。

扩展资料:

常用的有如下三种:

⒈按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器。

⒉按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。

⒊按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。

压力传感器主要用于检测气缸负压、大气压、涡轮发动机的升压比、气缸内压、油压等。吸气负压式传感器主要用于吸气压、负压、油压检测。汽车用压力传感器应用较多的有电容式、压阻式、差动变压器式(LVDT)、表面弹性波式(SAW)。

电容式压力传感器主要用于检测负压、液压、气压,测量范围20~100kPa,具有输入能量高,动态响应特性好、环境适应性好等特点;压阻式压力传感器受温度影响较大,需要另设温度补偿电路,但适应于大量生产。

LVDT式压力传感器有较大的输出,易于数字输出,但抗干扰性差;SAW式压力传感器具有体积小、质量轻、功耗低、可靠性高、灵敏度高、分辨率高、数字输出等特点,用于汽车吸气阀压力检测,能在高温下稳定地工作,是一种较为理想的传感器。

参考资料:

百度百科--汽车传感器

传感器是各种仪器仪表的重要组成部分,它是实现自动检测和自动控制的首要环节。那么,传感器的种类和作用都有哪些呢?

一、传感器的种类

在生产和生活中,传感器的种类主要有:

1、光传感器

光传感器利用的是半导体的光导效应或光生伏特效应。光生伏特效应是通过光照射,将半导体PN结处产生的电压或电流作为输出加以检测。如光敏二级管,光敏三级管等。这些效应都是利用了光的量子性质。最常见的应用实例,就是光控灯。

2、温度传感器

用于检测温度的物理效应当中,除了利用塞贝克效应的热电偶外,通常利用Pt,W等的金属和氧气物半导体以及非氧化物半导体,有机半导体等的电阻随温度变化来作为温度传感器的。此外,还有利用PN结处电流——电压特性随温度的变化,利用居里温度附近磁特性和介电常数变化的传感器,利用介电常数和压电常数的变化,来检测其共振频率变化的温度的传感器等,如常见的空调的控温。

3、压力传感器

压力传感器大多利用了某种压阻效应。压阻效应是指当压力施加于电阻体上时,会使其电阻值发生变化,该现象称为压阻现象,比金属电阻的变化要明显得多,主要是因在受压后其电子或空穴的迁移率发生变化。比较常见的应用像电子称。

4、磁传感器

磁传感器的常用效应是霍尔效应与磁阻效应。利用霍尔效应的元件是霍尔元件,它是在一半导体薄片两端之间通以电流,如果在薄片垂直方向外加一磁场,则载流子在罗伦兹力的作用下,将沿着与磁场方向垂直的方向移动,若在该方向上设置电极,则可检测出电压来(霍尔电压)。典型应用如电动车的调速方法。

5、气体传感器

气体传感器实际就是半导体气体传感器。主要是气体的吸附效应。如半导体SnO2烧结制成的气敏传感器,其为多晶体,当表面吸附气体分子时,就会在气体分子与烧结体之间发生电子交换。控制载流子运动的晶粒界面处的势垒会发生变化。若在烧结体上设置两个电极,其间电阻将随气体分子吸附情况而增减。一般在还原性气体中电阻值会减少,在氧化性气体中电阻值会增加。最常见的应用实例,就是各种烟雾报警器了。

二、传感器的作用

传感器的作用是什么,传感器实际上是一种功能块,其作用是将来自外界的各种信号转换成电信号。传感器所检测的信号近来显著地增加,因而其品种也极其繁多。

为了对各种各样的信号进行检测、控制,就必须获得尽量简单易于处理的信号,这样的要求只有电信号能够满足。电信号能较容易地进行放大、反馈、滤波、微分、存贮、远距离操作等。因此作为一种功能块的传感器可狭义的定义为:“将外界的输入信号变换为电信号的一类元件。”

传感器的分类

可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。

根据传感器工作原理,可分为物理传感器和化学传感器二大类 :

传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。

化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。

有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。

常见传感器的应用领域和工作原理列于表11。

按照其用途,传感器可分类为:

压力敏和力敏传感器 �位置传感器

液面传感器 �能耗传感器

速度传感器 �热敏传感器

加速度传感器 �射线辐射传感器

振动传感器� 湿敏传感器

磁敏传感器� 气敏传感器

真空度传感器� 生物传感器等。�

以其输出信号为标准可将传感器分为:

模拟传感器——将被测量的非电学量转换成模拟电信号。�

数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。�

膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。�

开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。

在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类:

(1)按照其所用材料的类别分�

金属� 聚合物� 陶瓷� 混合物�

(2)按材料的物理性质分� � 导体� 绝缘体� 半导体� 磁性材料�

(3)按材料的晶体结构分�

单晶� 多晶� 非晶材料�

与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:�

(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。�

(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。�

(3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。�

现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。表12中给出了一些可用于传感器技术的、能够转换能量形式的材料。�

按照其制造工艺,可以将传感器区分为:

集成传感器�薄膜传感器�厚膜传感器�陶瓷传感器

集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。�

薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。�

厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。

陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。�

完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。�

每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。

根据传感器的工作原理可把电容式传感器分为变极距型、变面积型和变介质型三种类型。

根据传感器的结构可把电容式传感器分为三种类型的结构形式。它们又可按位移的形式分为线位移和角位移两种,每一种又依据传感器极板形状分成平(圆形)板形和圆柱(圆筒)形,虽然还有球面形和锯齿形等其他形状,但一般很少用。其中差动式一般优于单组(单边)式传感器,它具有灵敏度高、线性范围宽、稳定性高等特点。

扩展资料:

一、优点

1、温度稳定性好

电容式传感器的电容值一般与电极材料无关,这有利于选择温度系数低的材料,又因本身发热极小,影响稳定性甚微。而电阻传感器有铜损,易发热产生零漂。

2、结构简单

电容式传感器结构简单,易于制造和保证高的精度,可以做得非常小巧,以实现某些特殊的测量;能工作在高温,强辐射及强磁场等恶劣的环境中,可以承受很大的温度变化,承受高压力,高冲击,过载等;能测量超高温和低压差,也能对带磁工作进行测量。

3、动态响应好

电容式传感器由于带电极板间的静电引力很小(约几个10^(-5)N),需要的作用能量极小,又由于它的可动部分可以做得很小很薄,即质量很轻,因此其固有频率很高,动态响应时间短,能在几兆赫兹的频率下工作,特别适用于动态测量。又由于其介质损耗小可以用较高频率供电,因此系统工作频率高。它可用于测量高速变化的参数。

二、相关应用

电容式传感器具有结构简单、耐高温、耐辐射、分辨率高、动态响应特性好等优点,广泛用于压力、位移、加速度、厚度、振动、液位等测量中。但在使用中要注意以下几个方面对测量结果的影响:

①减小环境温度、湿度变化(可能引起某些介质的介电常数或极板的几何尺寸、相对位置发生变化)。

②减小边缘效应。

③减少寄生电容。

④使用屏蔽电极并接地(对敏感电极的电场起保护作用,与外电场隔离)。

⑤注意漏电阻、激励频率和极板支架材料的绝缘性。

参考资料来源:百度百科-电容式传感器

根据传感器的工作原理可把电容式传感器分为变极距型、变面积型和变介质型三种类型。

根据传感器的结构可把电容式传感器分为三种类型的结构形式。它们又可按位移的形式分为线位移和角位移两种,每一种又依据传感器极板形状分成平(圆形)板形和圆柱(圆筒)形,虽然还有球面形和锯齿形等其他形状,但一般很少用。

其中差动式一般优于单组(单边)式传感器,它具有灵敏度高、线性范围宽、稳定性高等特点。

扩展资料:

相关延伸:传感器主要作用:

人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。

新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。

在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。

在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到fm的粒子世界,纵向上要观察长达数十万年的天体演化,短到s的瞬间反应。

此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。

许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。

传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。

由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。

参考资料来源:百度百科-传感器

参考资料来源:百度百科-电容式传感器

以上就是关于汽车传感器分类有几种类型全部的内容,包括:汽车传感器分类有几种类型、传感器都有哪些类别、传感器有哪些类型等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:聚客百科

原文地址: http://juke.outofmemory.cn/life/3764136.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存