残差在数理统计中是指实际观察值与估计值(拟合值)之间的差。"残差"蕴含了有关模型基本假设的重要信息。如果回归模型正确的话, 我们可以将残差看作误差的观测值。
它应符合模型的假设条件,且具有误差的一些性质。利用残差所提供的信息,来考察模型假设的合理性及数据的可靠性称为残差分析。
拓展资料:
在回归分析中,测定值与按回归方程预测的值之差,以δ表示。残差δ遵从正态分布N(0,σ2)。(δ-残差的均值)/残差的标准差,称为标准化残差,以δ*表示。δ*遵从标准正态分布N(0,1)。实验点的标准化残差落在(-2,2)区间以外的概率≤0.05。若某一实验点的标准化残差落在(-2,2)区间以外,可在95%置信度将其判为异常实验点,不参与回归直线拟合。
显然,有多少对数据,就有多少个残差。残差分析就是通过残差所提供的信息,分析出数据的可靠性、周期性或其它干扰。
残差分析的重要方法之一。通常横坐标的选择有三种:(1) 因变量的拟合值;(2)自变量;(3)当因变量的观测值为一时间序列时,横坐标可取观测时间或观测序号。残差图的分布趋势可以帮助判明所拟合的线性模型是否满足有关假设。如残差是否近似正态分布、是否方差齐次,变量间是否有其它非线性关系及是否还有重要自变量未进入模型等。.当判明有某种假设条件欠缺时, 进一步的问题就是加以校正或补救。需分析具体情况,探索合适的校正方案,如非线性处理,引入新自变量,或考察误差是否有自相关性。先进行残差分析。残差分析(residualanalysis)就是通过残差所提供的信息,分析出数据的可靠性、周期性或其它干扰。回归预测就是把预测的相关性原则作为基础,把影响预测目标的各因素找出来,然后找出这些因素和预测目标之间的函数关系的近似表达,并且用数学的方法找出来。在利用样本数据对其模型估计参数,并且对模型进行误差检验。