三角形的重心

花肌粹2023-02-03  21

三角形重心的定义是三角形三条中线的交点。

数学上的重心是指三角形的三条中线的交点,其证明定理有燕尾定理或塞瓦定理,应用定理有梅涅劳斯定理、塞瓦定理。

对于均质物体,如在几何形体上具有对称面、对称轴或对称中心,则该物体的重心或形心必在此对称面、对称轴或对称中心上。下面介绍几种常用的确定重心位置的方法。

三角形的重心就是三条中线的交点。当几何体为匀质物体时,重心就是三角形的中心。

三角形重心和三角形3个顶点组成的3个三角形面积相等;重心到三角形3个顶点距离的平方和最小;重心到顶点的距离与重心到对边中点的距离之比为2:1;重心是三角形内到三边距离之积最大的点。

扩展资料

重心的性质

1、重心到顶点的距离是重心到对边中点的距离的2倍。

2、重心和三角形3个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。


转载请注明原文地址:https://juke.outofmemory.cn/read/2886218.html

最新回复(0)