分数的基本性质是:分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变。
分数:把单位"1"平均分成若干份,表示这样的一份或几份,叫做分数。
根据分数与除法的关系,分数的基本性质与商不变性质类似。分数的基本性质是约分和通分的理论依据。
1、分数的基本性质是指分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
2、一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,不可能用分数代替。
3、当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行约分与通分。
分数:
分数原是指整体的一部分,或更一般地,任何数量相等的部分。表现形式为一个整数a和一个整数b的比(a为b倍数的假分数是否属于分数存在争议)。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位1平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。
当分母为100的特殊情况时,可以写成百分数的形式,如1%。
分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
分数的基本性质
分数的基本性质:分数的分子和分母同时扩大或缩小相同的倍数(这儿讲的倍数除0外),分数的大小不变。这叫做分数的基本性质。根据分数与除法的关系,分数的基本性质与商不变性质类似。
概念:分数的分子和分母同时扩大或缩小相同的倍数(这儿讲的倍数除0外),分数的大小不变。
分数是指整体的一部分,或更一般地,任何数量相等的部分;是一个整数a和一个正整数b的不等于整数的比。
分数注意事项
①分母一定不能为0,因为分母相当于除数。否则等式无法成立,分子可以等于0,因为分子相当于被除数。相当于0除以任何一个数,不论分母是多少,答案都是0。
②分数中的分子或分母经过约分后不能出现无理数(如2的平方根),否则就不是分数。
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)