高铁站地下停车场配电系统和电梯的防雷检测规定和要求

武当山在哪2023-03-21  17

无论是哪种建构筑物的防雷装置进行检测,都无外乎这几项,建筑物防雷类别、接闪器、引下线、接地装置、等电位连接、电磁屏蔽及浪涌保护器等。配电系统及电梯的防雷检测相关要求如下,仅供参考:

一是,接闪器、引下线、接地装置检测

电梯所在建筑物接闪器、引下线、接地装置的检测按GB/T 21431-2015第5.2条、5.3条、5.4条规定的方法检测,本检测只记录其检测结果是否符合规范。

二是,等电位连接装置检测

1.检查各种接地线数量、材料规格、接地点位置、敷设方式,并测量其接地电阻值。

2.轿厢导轨、平衡重(对重)导轨及电梯井道内其他金属构件的检测,首先应检查其与均压环及接地干线的电气连接,如已实现连接,应进一步检查连接质量,连接导体的材料规格,并测量其过渡电阻值。

3.检查机房内所有可导电部件,包括配电箱(柜)、控制柜外露可导电部分、电梯驱动主机、减速箱、承重钢梁、限速器、桥架、线槽等金属构件与等电位连接带的电气连接情况,并测量其过渡电阻值。

4.检查 轿厢、轿门、层门、呼梯(召唤)盒、轿厢缓冲器、平衡重(对重)缓冲器、张紧装置、底坑检修装置等金属构件与就近的轨道或接地干线电气连接情况,并测试其过渡电阻值。

5.等电位连接的过渡电阻的测量采用空载电压4V~24V,最小电流为0.2A的测试仪器进行测量,过渡电阻值应不大于0.2Ω。

三是,雷击电磁脉冲屏蔽装置检测

1.电梯机房、辅助机房的金属门窗、屋顶金属表面、立面金属表面、混凝土内钢筋和金属门窗框架等大尺寸金属件等应等电位连接在一起,并与防雷接地装置连接。

2.屏蔽电缆的金属屏蔽层应在两端做等电位连接,并与防雷接地装置连接。

四是,电涌保护器(SPD)检测

1.检查并记录各级SPD的安装位置,安装数量、型号、主要性能参数和安装工艺。

2.灼痕或变形。SPD的标志应完整和清晰。

3.检查多级SPD之间的距离是否符合GB 21431-2015第5.8.2.5条的规定。

4.检查SPD两端引线的长度是否符合GB 21431-2015第5.8.1.8条的规定。

5.检查SPD是否具有状态指示器,如有,则需确认状态指示与生产厂说明相一致。

6.检查安装在电路上的SPD限压型元件前端是否有脱离器。如SPD无内置脱离器,则检查是否有过电流保护器,检查安装的过电流保护器是否符合GB 21431-2015第5.8.2.6条的规定。

7.检查安装在配电系统中的SPD的Uc值是否符合GB 21431-2015表4的规定。

8.检查安装在信号系统中的SPD的Uc值是否符合GB 21431-2015表6的规定。

9.测量接地线与等电位连接带之间的过渡电阻,过渡电阻值应不大于0.2Ω。

(援引联亚检测www.lianyajiance.cn)

铁路防雷系统

铁路信号设备雷电及电磁兼容综合防护实施指导意见

1 总则

1.0.1 为统一规范铁路信号设备雷电及电磁兼容防护工作,提高信号设备抗御电磁干扰能力,减少或防止雷电故障,特制定本实施指导意见。报

1.0.2 铁路信号设备雷电防护应采取综合防护的方法,主要为三个方面:

l 改善电磁兼容环境条件,包含屏蔽、等电位设置以及合理布线;

l 分区分级设置防雷保安器;

l 良好接地措施。

1.0.3 铁路信号设备本身的电磁兼容性应当符合《铁道信号电气设备电磁兼容性试验及其限值》(TB/T 3073-2003)规定要求。电气化牵引区段,与钢轨连接的信号设备,还应符合TB/T 3073-2003标准附录A牵引电流传导性干扰试验(即不平衡牵引电流抗干扰度试验)要求。

1.0.4 与室外连接的信号设备,其雷电电磁脉冲的抗扰度应符合《铁道信号设备雷电电磁脉冲防护技术条件》(TB/T 3074-2003)第9章“信号设备雷电电磁脉冲防护水平”要求。

1.0.5 本实施指导意见适用于新建和既有线改造工程。要求在铁路信号新建和改造工程中,必须统筹设计铁路信号设备雷电综合防护。信号雷电综合防护设计与施工应由通过铁道部审定的专业公司承担。对于隐蔽工程应严格执行监理和随工验收制度,确保工程质量。

2 铁路信号设备防雷保安器(SPD)的要求与设置

2.1 一般要求

2.1.1 铁路信号设备防雷保安器应纳入产品强制认证管理,技术指标和应用要求必须符合相关检测标准,所用防雷保安器须获得产品强制认证证书。

2.1.2 按照分区、分级、分设备防护和纵向、横向或纵横向防护的需要合理选用防雷保安器。

2.1.3 当防雷保安器处于劣化或损坏状态时,须立即自动脱离电路且不得影响设备正常工作。

l 防雷保安器并联应用时,在任何情况下不得成为短路状态;串联应用时,在任何情况下不得成为开路状态。

l 防雷保安器对地有连接的,除了放电状态,其他时间不得构成导通状态;否则必须辅以接地检测报警装置。

2.1.4 用于电源电路的防雷保安器,应单独设置;必须具有阻断续流的性能;安装在分线盘(柜)处、电源防雷箱内及工作电压在110V以上的防雷保安器应有劣化指示。

2.1.5 凡属于独立防雷电路上的防雷保安器,应统一编号管理,并具有例行检测记录;其安装应便于日常维护检测。

2.1.6 并联应用的防雷保安器应能实现热插拔,信号传输线的防雷保安器应实现即插即用(信号传输线的范围详见表2)。

2.1.7 按照分区分级的原则,信号传输线的防雷保安器应集中设置在分线盘处。新建或大修车站(场)应采用防雷型分线柜;既有车站应在分线盘处设防雷保安器,并尽可能采用防雷型分线柜。

2.1.8 被保护设备本身已加装防雷保安器,且其抗扰度已达到TB/T 3074-2003第九章规定的试验等级为4级或X级的,可不设置防雷保安器。

2.2 电源防雷保安器

2.2.1 外电网引入机房建筑物应采用多级雷电防护。第Ⅰ级设在户外交流电源馈线引入处(配电盘)(电力部门未做雷电防护时,第Ⅰ级设在电力开关箱后);第Ⅱ级设在电源屏电源引入侧;第Ⅲ级设在微电子设备(指计算机终端电源稳压器或UPS电源前)。

2.2.2 第Ⅰ级电源防雷应有故障声光报警、雷电计数和状态显示(三相电源每一相线均应有状态显示)等功能。

2.2.3 电源防雷应采用信号电源防雷箱方式,信号防雷箱设置地点应符合防火要求。

2.2.4 信号设备机房的电源应采用TN-S系统。三相电源供电的机房,应采用L(相线)—L、L—PE(保护地线)和N(中性线)—PE全模防护的并联三相电源防雷箱;单相电源供电的机房,应采用L—N、L—PE和N—PE的单相电源防雷箱。

2.2.5 室内电源防雷保安器应按表1选取冲击通流容量和限制电压。

表1 信号设备机房的电源防雷保安器冲击通流容量和限制电压表

交 流 电 源 防 雷 保 安 器 直流电源

防雷保安器

信号防雷箱(I) 电源屏前(II) 微电子设备电源前(III)

冲击通

流容量 限制电压 冲击通

流容量 限制电压 冲击通

流容量 限制电压 冲击通

流容量 限制电压

≥40kA ≤1500V ≥20kA ≤1000V ≥10kA ≤500V ≥10kA 注3

注:1.微电子设备电源引入前安装的并联型交流电源防雷箱限制电压达不到要求时,应采用带滤波器的串联型电源防雷箱。

2.电源防雷箱的功率应大于被保护设备总用电量的1.2倍。

3.直流电源防雷保安器的选取:工作电压24 V时,限制电压75 V;工作电压48 V时,限制电压110V;工作电压110 V时,限制电压220 V;工作电压220 V时,限制电压500 V。

2.2.6 室外架空线路应在架空线两端引入处设置防雷保安器。架空线供电的交流电源防雷保安器,冲击通流容量不小于20kA,限制电压不大于700V,在中雷区以上的地区,限制电压可不大于1000V。

2.3 信号传输线防雷保安器

2.3.1 室内数据传输线长度大于50-100m时,可在一端设备接口处设置防雷保安器;大于100m时,宜在两端设备接口处设置防雷保安器。

2.3.2 室内信号传输线防雷保安器的选用应符合以下条款要求:

l 室内采集、驱动信号传输线防雷保安器冲击通流容量不小于1.5kA,限制电压不大于60V,信号衰耗不大于0.5db。

l 室内视频信号传输线防雷保安器冲击通流容量不小于1.5kA,限制电压不大于10V,信号衰耗不大于0.5db。

l 室内RS232 、RS422、RJ45、G.703 /V.35等通信接口信号传输线防雷保安器冲击通流容量不小于1.5kA,限制电压不大于40V,信号衰耗不大于0.5db。

l 其他室内信号传输线防雷保安器冲击通流容量不小于5kA,限制电压按表2选取。

2.3.3 安装于室外的电子设备宜在缆线终端入口处设置防雷保安器或防雷变压器。

2.3.4 室外信号传输线(非架空线)防雷保安器冲击通流容量不小于10kA,限制电压按表2选取。

表2 信号传输线防雷保安器限制电压表

信号设备名称(工作电压) 限制电压(V)

1 轨道电路发送和接收端 ≤190 、330 、500 、700 (注)

2 电码化轨道区段(≥220 V) ≤1000

3 信号点灯、道岔表示、道岔启动(220V时) ≤700

4 道岔启动(380V时) ≤1000

5 220V交/直流回路 ≤700/500

6 110V交/直流回路 ≤500/220

7 48V交/直流回路 ≤330/110

8 24V以下交/直流回路 ≤190/75

注:

1.交流轨道电路:工作电压小于36V时,限制电压应≤190V;工作电压36—60V时,限制电压应≤330V;工作电压60—110V时,限制电压应≤500V;工作电压110—220V时,限制电压应≤700V。

2.直流轨道电路:工作电压小于24V时,限制电压应≤75V。

3.改善机房电磁环境

3.1 既有机房建筑物直击雷防护和屏蔽

3.1.1 为抗御直击雷和降低雷电电磁干扰,信号机房的建筑物应采用法拉第笼进行电磁屏蔽。

l 法拉第笼由屋顶避雷网、避雷带和引下线、机房屏蔽和接地系统构成。

l 避雷网由不大于3m×3m的方形网格构成,每隔3m与避雷带焊接连通。网格由40mm×4mm的热镀锌扁钢交叉焊接构成。热镀锌钢材的镀层厚度为20~60μm。

l 避雷带应采用不小于Φ8mm热镀锌圆钢沿屋顶周边设置一圈,距墙体高度0.15m,并用热镀锌圆钢均匀设置避雷带支撑柱,支撑柱间距不大于1m。

l 引下线是避雷带与接地装置的连接线,沿机房建筑物外墙均匀垂直敷设4-6根,安装应平直,并与其它电气线路距离大于1m。引下线的固定卡钉布置应均匀牢固,间距宜小于2m。

l 引下线宜采用40mm×4mm热镀锌扁钢或不小于Φ8mm热镀锌圆钢,上端与避雷带焊接连通,焊接处不得出现急弯(弯角不小于R90°),下端与地网焊接。

l 引下线与分线盘(柜)间距应不小于5m。

3.1.2 信号机房建筑物屋顶不允许设置避雷针。

3.1.3 为节省投资和合理利用资源,法拉第笼也可利用建筑物的钢筋混凝土结构或框架结构建筑物,实现引下线和大空间屏蔽网的作用。引下线利用建筑物内主钢筋时,主钢筋应与接地装置(地网)、避雷带焊接。

3.1.4 安装电子设备的机房宜进行更完善的室内法拉第笼屏蔽。

l 其屏蔽层应选用铁板或铝板等电磁屏蔽材料,板材厚度应不小于0.6mm。

l 门窗屏蔽应采用截面积不小于3mm、网孔小于80mm×80mm的铝合金网,并用不小于16mm的软铜线与地网或屏蔽层可靠连接。

l 金属板间每间隔500mm必须焊接或用不小于2mm的软铜线可靠连接。

l 屏蔽层必须在引下线与地网连接处用不小于25 mm的软铜线可靠连接(可多处连接)。

l 机房已经预留钢筋接地端子板的,屏蔽层还应与钢筋接地端子板栓接。

l 机房地面宜采用防静电地板;其金属支架间应互相可靠连接,或在金属支架底部采用0.1mm×20 mm铜箔带构成与支架一致的网格,铜箔带交叉处用锡焊接。

l 互相连接的金属支架或网格铜箔带应采用10 mm的铜带(扁平铜网编织带)应与地网或屏蔽层连接,至少4处,铜带一端加线鼻后与地网或屏蔽层栓接,另一端用锡焊接。

3.2 新建机房建筑物直击雷防护和屏蔽

3.2.1 机房在选址上除考虑生产需要、生活方便外,还应选在土壤电阻率低、腐蚀性小、距变(配)电所大于200m的位置。

3.2.2 房屋结构应采用钢筋混凝土框架结构。在混凝土框架内应设置不小于Φ12mm的圆钢为主筋(加强钢筋),主筋间用相同规格的圆钢相互焊接成不大于5m×5m的网格,并保证电气连接的连续性。主筋上端必须与避雷带焊接,下端必须就近与基础接地网焊接。

3.2.3建筑物施工时,应在机房四周室内、室外距地面0.3m处预留与混凝土框架内主筋连接的接地端子板各4块。室外接地端子板应与环形接地装置栓接,室内接地端子板应与机房屏蔽层或与防静电地板下的金属支架(或支架下的铜箔带)栓接。

3.2.4 机房直击雷防护和屏蔽应符合3.1.1、3.1.2、3.1.4条要求。

3.2.5 安装电子设备的机房可在墙体内用钢筋网设置屏蔽层。钢筋网应采用不小于Φ8mm的圆钢焊接成不大于600mm×600mm网格,并与主筋焊接连通,窗户设有防盗网的还应与防盗网钢筋焊接。门窗屏蔽及采用金属板的机房屏蔽应符合3.1.4条要求。

3.3 室外信号设备直击雷防护和屏蔽

3.3.1 室外电子设备集中的区域,可在距电子设备和机房建筑物30m以外的地点安装多支独立避雷针。

3.3.2 包含信号设备的箱、盒、柜等壳体应具有良好的电气贯通和电磁屏蔽性能,壳体内应设专用接地端子(板)。室外信号设备的金属箱、盒壳体必须接地。进出金属箱、盒的电源线、信号线宜采用屏蔽电缆或非屏蔽电缆穿钢管埋地敷设,屏蔽电缆的金属屏蔽层或钢管应接地。

3.3.3 严禁用钢轨代替地线。

3.3.4 高柱信号机点灯线缆应采用屏蔽线缆。

3.4 接地系统

3.4.1 一般要求

l 信号设备应设安全地线、屏蔽地线和防雷地线。信号设备的机架(柜)、控制台、箱盒、信号机梯子等应设安全地线,交流电力牵引区段的电缆金属护套应设屏蔽地线,防雷保安器应设防雷地线,安装防静电地板的机房应设防静电地线,微电子设备需要时可设置逻辑地线。上述地线均由共用接地系统的地网引出。

l 室内信号设备的接地装置应构成网状(地网)。

l 接地导线上严禁设置开关、熔断器或断路器。

3.4.2 地网

l 地网由各接地体、建筑物四周的环形接地装置、基础钢筋构成的接地体相互连接构成。

l 新建建筑物混凝土基础的钢筋必须焊接成基础接地网,网格宽度不大于3m;既有建筑物为钢筋混凝土基础的,可利用混凝土基础钢筋作为基础接地网。

l 环形接地装置一般由水平接地体和垂直接地体组成,应环绕建筑物外墙闭合成环,受条件限制时可不环周敷设,但应尽可能沿建筑物周围设置,以便与地网连接的各种引线就近连接。水平接地体距建筑物外墙间距不小于1m,埋深不小于0.7 m。

水平接地体可采用以下材料:

a 40mm×4mm热镀锌扁钢;

b 镀层厚度大于250μm、直径大于14 mm的镀铜圆钢;

c 不小于50mm2铜带或缠绕的电缆;

d 与贯通地线材质相同。

l 在避雷带引下线处应设垂直接地体,垂直接地体必须与水平接地体可靠焊接。接地电阻不满足要求时,可增设垂直接地体,其间距不宜小于其长度的2倍并均匀布置。

l 接地体应设置永久性明显标志。

l 环形接地装置必须与建筑物四角的主筋焊接,并应在地下每隔5—10m就近与建筑物基础接地网钢筋焊接一次。

l 垂直接地体可采用石墨电极、铜包钢、铜材、热镀锌钢材(钢管、圆钢、角钢、扁钢)或其它新型接地材料,电力牵引区段宜采用石墨接地体。

a采用热镀锌钢管时,钢管壁厚不小于3.5mm;

b采用热镀锌角钢,角钢不小于50mm×50mm×5mm;

c采用热镀锌扁钢时,扁钢不小于40mm×4mm;

d采用热镀锌圆钢时,圆钢直径不小于8mm。

l 接地电阻难以达到要求时,可采取深埋接地体、设置外延接地体、换土、在接地体周围添加经环保部门认可的降阻剂或其他新技术、新材料等措施。

l 接地体难以避开污水排放和土壤腐蚀性强的地点时,垂直接地体应采用石墨接地体。水平接地体应选用耐腐蚀性材料,采用热镀锌扁钢时,镀层不宜小于60µm。

3.4.3 对既有建筑物进行地网改造时,应了解建筑物结构、原有防直击雷装置、原有接地和接地体的分布等。

3.4.4 贯通地线

l 电气化区段、繁忙干线、铁路枢纽、编组场、强雷区和埋设地线困难地区及微电子设备集中的区段,应设置贯通地线。

l 贯通地线应采用截面积不小于铜当量35mm、耐腐蚀并符合环保要求。

l 与信号电缆同沟埋设于电缆(槽)下方土壤中,距电缆(槽)底部不少于300 mm。

l 隧道、桥梁应两侧敷设;与桥梁墩台接地装置的接地连接线应设置成无维修方式。

l 上下行线路分线时,应分别敷设。

l 引接线(贯通地线与设备接地端子的连接线)采用25 mm的多股裸铜缆焊接或压接,焊接时焊接长度不小于100mm,并套150mm长热熔热缩带防护。

l 贯通地线任一点的接地电阻不得大于1Ω。

l 贯通地线在信号机房建筑物一侧每隔2-3m用50mm裸铜线与环形接地装置连接,两端各连接两次。

l 设置贯通地线的区段,铁路沿线及站内的各种室外信号设备的各种地线均应就近与贯通地线连接。

3.4.5 未设贯通地线的区段,室外信号设备可采用分散接地的方式,接地电阻值参照表3确定。

表3 室外信号设备接地电阻值

序号 接地装置

使用处所 土壤分类 黑土、泥炭土 黄土、砂质粘土 土加砂 砂土 土加石

土壤电阻率(Ω.m) 50以下 50-100 101-300 301-500 501以上

设备引入回线数 接地装置接地电阻值小于

1 轨道电路 -- 10 10 10 20 20

2 信号电源线 -- 10 10 10 20 20

3 站内一般信号设备 -- 10 10 10 20 20

3.5 接地汇集线及等电位连接

3.5.1 控制台室、继电器室、防雷分线室(或分线盘)、机房和电源室(电源引入处)应设置接地汇集线。接地汇集线宜采用大于30 mm×3mm紫铜排,可相互连接成条形、环形或网格形,环形设置时不得构成闭合回路。

3.5.2 接地汇集线受制造长度的限制需使用多根铜排时,铜排间直接连接的接触部分长度不少于60mm,接触面应打磨后用3个铜螺栓双螺帽连接。

3.5.3 电源室(电源引入处)防雷箱处、防雷分线室(或分线盘)处的接地汇集线应单独设置,并分别与环形接地装置单点冗余连接。其余接地汇集线可采用截面积不小于50 mm2有绝缘外护套的多芯铜导线或30 mm×3mm紫铜排相互连接后与环形接地装置单点冗余连接。

3.5.4 接地汇集线及接地汇集线间的连接导体、接地汇集线与地网的连接线必须与墙体绝缘。接地汇集线一般在距地面200-300mm(踢脚线紧上方)处设置;有防静电地板的机房,接地汇集线可在地板下方距地面30-50mm处设置,距墙面宜为100-150 mm;也可在地板下方设成条状或网格状。需要时,也可在机房房顶设置。接地汇集线上每隔1-1.5m应预留接地螺栓供连接使用。

3.5.5 室内走线架、组合架、电源屏、控制台、机架、机柜等所有室内设备必须与墙体绝缘,其安全地线、防雷地线、工作地线等必须以最短距离分别就近与接地汇集线连接。

3.5.6 走线架不得布置成环型,已构成闭合回路的可加装绝缘。在不构成闭合回路的前提下,必须保持走线架在电气上的连续性(可利用剥开的25mm2铜导线,敷设在电缆走线架内,并将每段走线架至少在两点进行连接),并用30mm×3mm紫铜排与接地汇集线栓接,连接螺栓采用Φ8mm铜质或不锈钢质,并不得少于3枚。

3.5.7 室内同一排不同的金属机架、柜之间用大于10 mm2多股铜导线栓接后再用不小于50mm2有绝缘外护套的多股铜线或30mm×3mm紫铜排就近与接地汇集线连接。

3.5.8 机房面积较大时,可以设置与地网单点冗余连接的总接地汇集线。控制台室、继电器室、计算机房的接地汇集线可分别与总接地汇接线单点连接,也可相互连接后与总接地汇接线单点连接。

3.5.9 机房分布在几个楼层时,各楼层可设置总接地汇集线,总接地汇集线间应采用50—95 mm的有绝缘外护套的多股铜导线焊接或加线鼻栓接。

3.5.10接地汇集线与地网的连接线应采用不小于50 mm2的有绝缘护套铜导线。电源室防雷箱处(电源引入处)接地汇集线在环形接地装置上的连接点与分线盘处接地汇集线在环形接地装置上的连接点之间,以及与其余接地汇集线在环形接地装置上的连接点之间距离宜大于5m。避雷带的引下线在环形接地装置上的连接点,与接地汇集线在环形接地装置上的连接点间距应大于5m。

3.5.11 无线天线避雷针的接地装置应单独设置,并距环形接地装置15m以上,特殊情况下不应小于5m,确因条件限制距离达不到要求时,其接地引接线应与环形接地装置焊接,焊接点与接地汇集线在环形接地装置上的连接点的间距不小于5m。

3.5.12 建筑物内所有不带电的自来水管、暖气管道等金属物体都必须与环形接地装置(或与建筑物钢筋、机房屏蔽层)做等电位连接。

4 施工与工艺

4.1 一般要求

4.1.1所有传输放电电流的导线必须阻燃且走最直接的路径,应减少长度(配线时不留余长)和方向变化,且这些导线的曲线半径不小于200 mm。

4.1.2所有防雷保安器接地线必须与接地汇集线就近可靠连接,接地线必须用短而直的黄绿软塑料多股铜导线,截面积不小于1.5mm2。

4.1.3 并联型防雷保安器与被保护设备端子的连接线截面积不小于1.5mm2,长度不得大于0.5m,受条件限制时,可适当延长,但严禁超过1.5m;或采用凯文接法。防雷保安器接地线长度应不大于1m。

4.1.4 采用栓接连接时,必须使用双螺帽。

4.1.5 各种防雷保安器均应设置用途及去向标牌。

4.1.6引接线、接地汇集线间的连接线等在穿越墙体、楼板时应加装保护并保证与墙体绝缘。

4.2 线缆引入和布放

4.2.1 进出建筑物的电力线、通信线和信号传输线宜采用屏蔽电缆埋地敷设,电缆屏蔽层宜两端接地,长度小于15m的屏蔽电缆可只在室内接地;采用非屏蔽电缆时,必须穿金属管埋地敷设。电力电缆长度宜大于15m。

电缆屏蔽层或金属管室内一端(末端)应连接到分线盘内的接地汇集线上,长于15m的屏蔽电缆,在该电缆室外端的始端接地。电气化区段或接地系统有较大干扰时,应只在机房接地汇集线一端接地。

4.2.2 室内信号传输线与设有屏蔽层的建筑物外墙平行敷设距离宜大于1m,场地条件不允许时,信号传输线路应采用屏蔽电缆或非屏蔽电缆穿钢管敷设,电缆屏蔽层或钢管应与走线架或与接地汇集线连接。

4.2.3电源线与信号线、高频线与低频线、进线与出线必须分开敷设。室内信号传输线路与电力线路平行靠近敷设时,其间距应符合表4的要求。条件不许可时,应采用屏蔽电缆,电缆护套和电缆屏蔽层应接地。

表4 通信信号电缆和电力电缆的间距表

类别 与通信信号电缆接近的情况 最小净距(mm)

380V电力电缆

<2kV·A 与缆线平行敷设 130

有一方在接地的金属线槽或钢管中 70

双方都在各自的接地的金属线槽或钢管中 10

380V电力电缆

2kV·A—5kV·A 与缆线平行敷设 300

有一方在接地的金属线槽或钢管中 150

双方都在各自的接地的金属线槽或钢管中 80

380V电力电缆

>5kV·A 与缆线平行敷设 600

有一方在接地的金属线槽或钢管中 300

双方都在各自的接地的金属线槽或钢管中 150

4.3 防雷保安器安装

4.3.1 电源防雷保安器

单相稳定电流小于100A的机房,电源线与防雷箱的连接线长度不得大于0.5m,受条件限制连接线长度大于0.5m时,应采用凯文接线法连接。防雷箱接地线必须与电源保护地线(PE)连接,并就近与接地汇集线连接。

连接线应采用塑料外护套多芯铜线,第I级连接线截面积不小于10mm、第II级不小于6mm、第III级不小于2.5mm。

4.3.2 信号传输线防雷保安器

l 进入建筑物的电缆金属护套和屏蔽层应与分线盘接地汇集线连接,使用中的电缆芯线经防雷保安器接地端子与接地汇集线连接,电缆备用芯线直接与接地汇集线连接。

l 信号传输线上设置的防雷保安器接地线必须与被保护设备金属外壳连接,连接线应采用截面积不小于1.5mm的多股铜芯导线,长度应不大于200mm,并就近与接地汇接线连接。

l 室外的信号设备防雷保安器接地端子应就近与接地体可靠连接,连接线应采用截面积不小于1.5mm的多股铜芯导线。

4.4. 连接

4.4.1 圆钢与圆钢、圆钢与扁钢(角钢)的焊接长度必须大于圆钢直径的6倍;扁钢、角钢必须三面焊接,焊接长度必须大于宽边的2倍。焊点平滑无毛刺,并做防腐处理,防腐层应在焊点四周延伸20-25mm,埋入地下的焊点防腐层必须大于5 mm以上。

4.4.2 室内的铜材与铜材间可用螺栓连接,连接时必须用双螺帽或栓接后施焊。

4.4.3 引接线与环形接地装置的连接可采用以下方式:

l 环形接地装置使用镀铜圆钢、铜带或缠绕的电缆时,应焊接。

l 环形接地装置使用热镀锌扁钢时,应栓接或焊接;栓接时,环形接地装置须采用有直径为8mm圆孔的40mm×4mm扁钢,引接线两端焊接线鼻后,用铜螺栓分别与扁钢和接地汇流线栓接。

l 环形接地装置与贯通地线材质相同时,应压接或焊接。

l 屏蔽层、暖气等金属管线、防静电地板金属支撑架等按上述方法与环形接地装置连接。

4.4.4 电缆金属护套与接地汇集线连接时,连接线一端焊接在金属护套上,另一端做线鼻后用铜螺栓与汇集线栓接;也可用线卡箍在电缆金属护套上,连接线两端作线鼻后分别与线卡和接地汇集线栓接。

5 工程验收

5.0.1验收内容包括检查技术文件,检查、检测防雷设施。

5.0.2 技术文件应包含:

l 设计方案及变更设计记录;

l 隐蔽工程(环形接地装置、垂直接地体、建筑物基础地网)的安装技术记录和随工验收记录;

l 避雷网、避雷带、引下线、环形接地装置、垂直接地体、建筑物基础地网和室内各接地汇集线、屏蔽设施等竣工图纸;

l 防雷保安器配置图和接线、配线图;

l 防雷保安器使用说明书,包括技术性能、安装方法,技术指标、维修和故障应急处理方法等;

l 防雷保安器出厂检验报告、出厂合格证,CRCC证书等;

l 地网接地电阻(一组)测试记录,包括测试仪表和环境描述(时间、气候、土质等)。

5.0.3 避雷网、避雷带、引下线、地网检查。

l 使用材料;

l 安装、连接和防腐检查;

l 地网埋设、标志及隐蔽工程记录检查。

5.0.4 接地汇集线及机房屏蔽的检查。

l 使用材料;

l 安装及连接检查(其中,金属门窗与地网、防静电地板支柱与地网、机房屏蔽与地网、机房屏蔽的任两点之间用毫欧表进行测试,电阻应小于0.1Ω)。

5.0.5 防雷保安器安装检查

l 安装位置、方式及配线的规格、颜色、长度、径路检查;

l 各级能量配合及参数检查,并有CRCC认证标志;

一、客观因素

“高铁大跃”本身便埋下了长期的安全隐患,很多技术上的难题还亟待解决。因此,该领域存在的是严重的“系统性问题”,并非一朝一夕可以彻底解决的。文国庆认为,基本面的客观情况决定高铁概念股后市行情着实缺乏“可期待之处”。他坦言,自己对高铁概念板块持“负面观点”,表示长期不看好。提醒投资者要冷静分析、规避风险。此外,火车是有防雷系统的,弓网系统和信号系统都有防雷设施,但不能排除小概率事件的发生,强雷击还是会击穿设备造成短路,如果事故确实是雷击造成的话,那至少暴露出目前铁路的防雷系统还是比较脆弱的,或者说防雷系统的安全冗余度、可靠度还不够。

二、人为因素

1、管理理念不完善

中国高铁的发展速度确实惊人,我们只用了6-7年的时间就做了别人用几十年才能做到的事情,我们在高铁建设的技术上已经走在前面,正如我们的航天事业一样,同样走在世界的前面,可是后者因为是军用,其管理的严格性绝对是高级别的,而铁路建设毕竟以民用为主,所以在管理方面就差得多了,何况民用建设中因为还存在着许多蛀虫,所用材料和元器件完全有可能掺杂不合格产品,完全会有隐患存在,另外在竣工验收中同样会存在这样那样的微小问题,为了赶时间献礼和庆祝,这些问题都是会被隐藏起来的,加上建成后不经过较长时间的运行试验,建成后的管理又不严格,因此,事故必然就频繁发生了。如果从现有的技术层面上分析,现在的各种视频监控技术和无线网络技术已经非常成熟,不仅铁路的轨道和列车外面我们可以在控制室可见,就是列车的驾驶室和每节车厢也都可以在控制室可见,至于列车运行的适时信号更是完全在控制室的掌控之中,输电线路同样可以适时监控,列车是不可能发生追尾事故的,夏天的雷电也是我们现有的防雷技术完全可以对付的,说到这里,恐怕只有一点我们是不能掌控的,那就是突然发生的强烈地震和突然发生的山洪爆发,那可是人类不可抗拒的天灾。


转载请注明原文地址:https://juke.outofmemory.cn/read/3203981.html

最新回复(0)